Skip to main content
Log in

Role of Calcineurin-Mediated Dephosphorylation in Modulation of an Inwardly Rectifying K+ Channel in Human Proximal Tubule Cells

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

An Erratum to this article was published on 10 December 2009

Abstract

Activity of an inwardly rectifying K+ channel with inward conductance of about 40 pS in cultured human renal proximal tubule epithelial cells (RPTECs) is regulated at least in part by protein phosphorylation and dephosphorylation. In this study, we examined involvement of calcineurin (CaN), a Ca2+/calmodulin (CaM)–dependent phosphatase, in modulating K+ channel activity. In cell-attached mode of the patch-clamp technique, application of a CaN inhibitor, cyclosporin A (CsA, 5 μM) or FK520 (5 μM), significantly suppressed channel activity. Intracellular Ca2+ concentration ([Ca2+] i ) estimated by fura-2 imaging was elevated by these inhibitors. Since inhibition of CaN attenuates some dephosphorylation with increase in [Ca2+] i , we speculated that inhibiting CaN enhances Ca2+-dependent phosphorylation, which might result in channel suppression. To verify this hypothesis, we examined effects of inhibitors of PKC and Ca2+/CaM-dependent protein kinase-II (CaMKII) on CsA-induced channel suppression. Although the PKC inhibitor GF109203X (500 nM) did not influence the CsA-induced channel suppression, the CaMKII inhibitor KN62 (20 μM) prevented channel suppression, suggesting that the channel suppression resulted from CaMKII-dependent processes. Indeed, Western blot analysis showed that CsA increased phospho-CaMKII (Thr286), an activated CaMKII in inside–out patches, application of CaM (0.6 μM) and CaMKII (0.15 U/ml) to the bath at 10−6 M Ca2+ significantly suppressed channel activity, which was reactivated by subsequent application of CaN (800 U/ml). These results suggest that CaN plays an important role in supporting K+ channel activity in RPTECs by preventing CaMKII-dependent phosphorylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bandyopadhyay A, Shin DW, Ahn JO, Kim DH (2000) Calcineurin regulates ryanodine receptor/Ca2+-release channels in rat heart. Biochem J 352:61–170

    Article  CAS  PubMed  Google Scholar 

  • Baughman G, Wiederrecht GJ, Campbell NF, Martin MM, Bourgeois S (1995) FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol 15:4395–4402

    CAS  PubMed  Google Scholar 

  • Borel JF (1991) Mechanism of action of cyclosporin A and rationale for use in nephritic syndrome. Clin Nephrol 35:S23–S30

    PubMed  Google Scholar 

  • Bultynck G, Vermassen E, Szlufcik K, De Smet P, Fissore RA, Callewaert G, Missiaen L, De Smedt H, Parys JB (2003) Calcineurin and intracellular Ca2+-release channels: regulation or association? Biochem Biophys Res Commun 311:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Burley JR, Sihra TS (2000) A modulatory role for protein phosphatase 2B (calcineurin) in the regulation of Ca2+ entry. Eur J Neurosci 12:2881–2891

    Article  CAS  PubMed  Google Scholar 

  • Cameron AM, Steiner JP, Rskmans AJ, Ali SM, Ronnett GV, Snyder SH (1995) Calcineurin associated with the inositol 1,4,5-triphospjophate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83:463–472

    Article  CAS  PubMed  Google Scholar 

  • Carranza ML, Rousselot M, Chibalin AV, Bertorello AM, Favre H, Feraille E (1998) Protein kinase A induces recruitment of active Na+, K+-ATPase units to the plasma membrane of rat proximal convoluted tubule cells. J Physiol 511:235–243

    Article  CAS  PubMed  Google Scholar 

  • Czirjak G, Toth ZE, Enyedi P (2004) The two-pore domain K+ channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin. J Biol Chem 279:18550–18558

    Article  CAS  Google Scholar 

  • Donella-Deana A, Krinks MH, Ruzzene M, Klee C, Pinna LA (1994) Dephosphorylation of phosphopeptides by calcineurin (protein phosphatase 2B). Eur J Biochem 219:109–117

    Article  CAS  PubMed  Google Scholar 

  • Gerges NZ, Alzoubi KH, Alkadhi KA (2005) Role of phosphorylated CaMKII and calcineurin in the differential effect of hypothyroidism on LTP of CA1 and dentate gyrus. Hippocampus 15:480–490

    Article  CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Hebert SC, Desir G, Giebisch G, Wang W (2005) Molecular diversity and regulation of renal potassium channels. Physiol Rev 85:319–371

    Article  CAS  PubMed  Google Scholar 

  • Jan A, Khanna A, Molmenti EP, Rishi N, Fung JJ (1999) Immunosuppressive therapy. Surg Clin North Am 79:59–76

    Article  Google Scholar 

  • Kubokawa M, Wang W, McNicholas CM, Giebisch G (1995) Role of Ca2+/CaMKII in Ca2+-induced K+ channel inhibition in rat CCD principal cell. Am J Physiol 268:F211–F219

    CAS  PubMed  Google Scholar 

  • Kubokawa M, Nakamura K, Hirano J, Yoshioka Y, Nakaya S, Mori Y, Kubota T (2000) Regulation of inwardly rectifying K+ channel in opossum proximal tubule cells by protein phosphatases 1 and 2A. Jpn J Physiol 50:249–256

    Article  CAS  PubMed  Google Scholar 

  • Kubokawa M, Sohma Y, Hirano J, Nakamura K, Kubota T (2005) Intracellular Mg2+ influences both open and closed times of a native Ca2+-activated BK channel in human proximal tubule. J Membr Biol 207:69–89

    Article  CAS  PubMed  Google Scholar 

  • Lieberman DN, Mody I (1994) Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase. Nature 369:235–239

    Article  CAS  PubMed  Google Scholar 

  • Ling BN, Eaton DC (1993) Cyclosporin A inhibits apical secretory K+ channels in rabbit cortical collecting tubule principal cells. Kidney Int 44:974–984

    Article  CAS  PubMed  Google Scholar 

  • Loane DJ, Hicks GA, Perrino BA, Marrion NV (2006) Inhibition of BKCa channel activity by association with calcineurin in rat brain. Eur J Neurosci 24:433–441

    Article  PubMed  Google Scholar 

  • Martell AE, Smith R (1977) Critical stability constants. In: Other organic ligands, vol 3. Plenum Press, New York

  • Mauerer UR, Boulpaep EL, Segel AS (1998a) Properties of an inwardly rectifying ATP-sensitive K+ channel in the basolateral membrane of renal proximal tubule. J Gen Physiol 111:139–160

    Article  CAS  PubMed  Google Scholar 

  • Mauerer UR, Boulpaep EL, Segel AS (1998b) Regulation of an inward rectifying ATP-sensitive K+ channel in the basolateral membrane of renal proximal tubule. J Gen Physiol 111:161–180

    Article  CAS  PubMed  Google Scholar 

  • Means AR (2000) Regulatory cascades involving calmodulin-dependent protein kinases. Mol Endocrinol 14:4–12

    Article  CAS  PubMed  Google Scholar 

  • Myers BD, Sibley R, Newton L, Tomlanovich SJ, Boshkos C, Stinson E, Luetscher JA, Whitney DJ, Krasny D, Coplon NS, Perlroth MG (1988) The long-term course of cyclosporine-associated chronic nephropathy. Kidney Int 33:590–600

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Hirano J, Itazawa S, Kubokawa M (2002) Protein kinase G activates inwardly rectifying K+ channel in cultured human proximal tubule cells. Am J Physiol 283:F784–F791

    Google Scholar 

  • Nakamura K, Hirano J, Kubokawa M (2004) Regulation of an inwardly rectifying K+ channel by nitric oxide in cultured human proximal tubule cells. Am J Physiol 287:F411–F417

    Article  CAS  Google Scholar 

  • Noulin JF, Brochiero E, Lapointe JY, Laprade R (1999) Two types of K+ channels at the basolateral membrane of proximal tubule: inhibitory effct of taurine. Am J Physiol 277:F290–F297

    CAS  PubMed  Google Scholar 

  • Oiki S, Okada Y (1987) Ca-EGTA buffer in physiological solutions [in Japanese]. Seitai-no-Kagaku 38:79–83

    Google Scholar 

  • Parent L, Cardian J, Sauve R (1988) Single channel analysis of a K channel at basolateral membrane of rabbit proximal tubule. Am J Physiol 254:106–113

    Google Scholar 

  • Robson L, Hunter M (2005) Phosphorylation regulates an inwardly rectifying ATP-sensitive K+- conductance in proximal tubule cells of frog kidney. J Membr Biol 207:161–167

    Article  CAS  PubMed  Google Scholar 

  • Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80:1483–1521

    CAS  PubMed  Google Scholar 

  • Rycroft BK, Gibb AJ (2004) Inhibitory interactions of calcineurin (phosphatase 2B) and calmodulin on rat hippocampal NMDA receptors. Neuropharmacology 47:505–514

    Article  CAS  PubMed  Google Scholar 

  • Sackin H, Boulpaep EL (1983) Rheogenic transport in the renal proximal tubule. J Gen Physiol 82:819–851

    Article  CAS  PubMed  Google Scholar 

  • Santana LF, Chase EG, Votaw VS, Nelson MT, Greven R (2002) Functional coupling of calcineurin and protein kinase A in mouse ventricular myocytes. J Physiol 544:57–69

    Article  CAS  PubMed  Google Scholar 

  • Shigekawa M, Katanosaka Y, Wakabayashi S (2007) Regulation of the cardiac Na+/Ca2+ exchanger by calcineurin and protein kinase C. Ann NY Acad Sci 1099:53–63

    Article  CAS  PubMed  Google Scholar 

  • Tavi P, Allen DG, Niemela P, Vuolteenaho O, Weckstrom M, Westerblad H (2003) Calmodulin kinase modulates Ca2+ release in mouse skeletal muscle. J Physiol 551:5–12

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Karin M (1999) Stimulation of Elk1 transcriptional activity by mitogen-activated protein kinases is negatively regulated by protein phosphatase 2B (calcineurin). J Biol Chem 274:15173–15180

    Article  CAS  PubMed  Google Scholar 

  • Tumlin JA (1997) Expression and function of calcineurin in the mammmarian nephron: physiological roles, receptor signaling, and ion transport. Am J Kidney Dis 30:884–895

    Article  CAS  PubMed  Google Scholar 

  • Tumlin JA, Sands JM (1993) Nephron segment-specific inhibition of Na+/K+-ATPase activity by cyclosporin A. Kidney Int 43:246–251

    Article  CAS  PubMed  Google Scholar 

  • Ventura HO, Mehra MR, Stapleton DD, Smart FW (1997) Cyclosporine-induced hypertension in cardiac transplantation. Med Clin North Am 81:1347–1357

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhang ZR, Chon CF, Liang YY, Gu Y, Ma HF (2009) Cyclosporine stimulates the renal sodium channel by elevating cholesterol. Am J Physiol 296:F284–F290

    CAS  Google Scholar 

  • Wang WH, Giebisch G (1991) Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C. Proc Natl Acad Sci USA 88:9722–9725

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Hebert SC, Giebisch G (1997) Renal K+ channels: structure and function. Annu Rev Physiol 59:413–436

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E, Bassel-Duby R, Williams RS (2002) Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 296:349–352

    Article  CAS  PubMed  Google Scholar 

  • Ye B, Liu Y, Zhang Y (2006) Properties of a potassium channel in the basolateral membrane of renal proximal convoluted tubule and the effect of cyclosporine on it. Physiol Res 55:617–622

    CAS  PubMed  Google Scholar 

  • Zhang Y, Lin DH, Wang ZJ, Jin Y, Yang B, Wang WH (2008) K restriction inhibits protein phosphatase 2B (calcineurin) and suppression of calcineurin decreases ROMK channel activity in the CCD. Am J Physiol 294:C765–C773

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a grant from the Corporation for Private School of Japan (to M. K., 2007–2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Kubokawa.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00232-009-9220-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubokawa, M., Kojo, T., Komagiri, Y. et al. Role of Calcineurin-Mediated Dephosphorylation in Modulation of an Inwardly Rectifying K+ Channel in Human Proximal Tubule Cells. J Membrane Biol 231, 79–92 (2009). https://doi.org/10.1007/s00232-009-9207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-009-9207-z

Keywords

Navigation