Skip to main content

Advertisement

Log in

Roles of Gap Junctions and Connexins in Non-Neoplastic Pathological Processes in which Cell Proliferation Is Involved

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Cell proliferation is an important process for reproduction, growth and renewal of living cells and occurs in several situations during life. Cell proliferation is present in all the steps of carcinogenesis, initiation, promotion and progression. Gap junctions are the only specialization of cell membranes that allows communication between adjacent cells. They are known to contribute to tissue homeostasis and are composed of transmembrane proteins called “connexins.” These junctions are also known to be involved in cell proliferation control. The roles of gap junctions and connexins in cell proliferation are complex and still under investigation. Since pioneer studies by Loewenstein, it is known that neoplastic cells lack communicating junctions. They do not communicate with their neighbors or with non-neoplastic cells from the surrounding area. There are many studies and review articles dedicated to neoplastic tissues. The aim of this review is to present evidence on the roles of gap junctions and connexins in non-neoplastic processes in which cell proliferation is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams CK, Freidin M, Bukauskas F, Dobrenis K, Bargiello TA, Verselis VK, Bennett MV, Chen L, Sahenk Z (2003) Pathogenesis of X-linked Charcot-Marie-Tooth disease: differential effects of two mutations in connexin 32. J Neurosci 23:10548–10558

    PubMed  CAS  Google Scholar 

  • Aldskogius H, Kozlova EN (1998) Central neuron-glial and glial-glial interactions following axon injury. Prog Neurobiol 55:1–26

    Article  PubMed  CAS  Google Scholar 

  • Ashton AW, Yokota R, John G, Zhao S, Suadicani SO, Spray DC, Ware JA (1999) Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A2. J Biol Chem 274:35562–35570

    Article  PubMed  CAS  Google Scholar 

  • Auerbach R, Lewis R, Shinners B, Kubai L, Akhtar N (2003) Angiogenesis assays: a critical overview. Clin Chem 49:32–40

    Article  PubMed  CAS  Google Scholar 

  • Avanzo JL, Mesnil M, Hernandez-Blazquez FJ, et al. (2004) Increased susceptibility to urethane-induced lung tumors in mice with decreased expression of connexin43. Carcinogenesis 25:1973–1982

    Article  PubMed  CAS  Google Scholar 

  • Beer DG, Neveu MJ, Paul DL, Rapp UR, Pitot HC (1988) Expression of the c-raf protooncogene, gamma-glutamyltranspeptidase, and gap junction protein in rat liver neoplasms. Cancer Res 48:1610–1617

    PubMed  CAS  Google Scholar 

  • Brandner JM, Houdek P, Husing B, Kaiser C, Moll I (2004) Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol 122:1310–1320

    Article  PubMed  CAS  Google Scholar 

  • Budunova IV, Carbajal S, Slaga TJ (1995) The expression of gap junctional proteins during different stages of mouse skin carcinogenesis. Carcinogenesis 16:2717–2724

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Cao R (1999) Angiogenesis inhibited by drinking tea. Nature 398:381

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Wu HK, Bruce A, Wollenberg K, Panjwani N (2002) Detection of differentially expressed genes in healing mouse corneas, using cDNA microarrays. Invest Ophthalmol Vis Sci 43:2897–2904

    PubMed  Google Scholar 

  • Chadjichristos CE, Matter CM, Roth I, Sutter E, Pelli G, Luscher TF, Chanson M, Kwak BR (2006) Reduced connexin43 expression limits neointima formation after balloon distension injury in hypercholesterolemic mice. Circulation 113:2835–2843

    Article  PubMed  CAS  Google Scholar 

  • Chandross KJ, Kessler JA, Cohen RI, Simburger E, Spray DC, Bieri P, Dermietzel R (1996) Altered connexin expression after peripheral nerve injury. Mol Cell Neurosci 7:501–518

    Article  PubMed  CAS  Google Scholar 

  • Chanson M, Derouette JP, Roth I, Foglia B, Scerri I, Dudez T, Kwak BR (2005) Gap junctional communication in tissue inflammation and repair. Biochim Biophys Acta 1711:197–207

    Article  PubMed  CAS  Google Scholar 

  • Cheng CW, Smith SK, Charnock-Jones DS (2003) Wnt-1 signaling inhibits human umbilical vein endothelial cell proliferation and alters cell morphology. Exp Cell Res 291:415–425

    Article  PubMed  CAS  Google Scholar 

  • Coutinho P, Qiu C, Frank S, Tamber K, Becker D (2003) Dynamic changes in connexin expression correlate with key events in the wound healing process. Cell Biol Int 27:525–541

    Article  PubMed  CAS  Google Scholar 

  • Coutinho P, Qiu C, Frank S, Wang CM, Brown T, Green CR, Becker DL (2005) Limiting burn extension by transient inhibition of connexin43 expression at the site of injury. Br J Plast Surg 58:658–667

    Article  PubMed  CAS  Google Scholar 

  • Dagli ML, Yamasaki H, Krutovskikh V, Omori Y (2004) Delayed liver regeneration and increased susceptibility to chemical hepatocarcinogenesis in transgenic mice expressing a dominant-negative mutant of connexin32 only in the liver. Carcinogenesis 25:483–492

    Article  PubMed  CAS  Google Scholar 

  • Deglise S, Martin D, Probst H, Saucy F, Hayoz D, Waeber G, Nicod P, Ris HB, Corpataux JM, Haefliger JA (2005) Increased connexin43 expression in human saphenous veins in culture is associated with intimal hyperplasia. J Vasc Surg 41:1043–1052

    Article  PubMed  Google Scholar 

  • Dezawa M, Mutoh T, Dezawa A, Adachi-Usami E (1998) Putative gap junctional communication between axon and regenerating Schwann cells during mammalian peripheral nerve regeneration. Neuroscience 85:663–667

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Watanabe S, Nagahara A, Hirose M, Sato N (1995) Restoration of gap junctions in the regenerative process of ethanol-induced gastric mucosal injury. J Gastroenterol Hepatol 10:589–594

    PubMed  CAS  Google Scholar 

  • Errede M, Benagiano V, Girolamo F, Flace P, Bertossi M, Roncali L, Virgintino D (2002) Differential expression of connexin43 in foetal, adult and tumour-associated human brain endothelial cells. Histochem J 34:265–271

    Article  PubMed  CAS  Google Scholar 

  • Evert M, Ott T, Temme A, Willecke K, Dombrowski F (2002) Morphology and morphometric investigation of hepatocellular preneoplastic lesions and neoplasms in connexin32-deficient mice. Carcinogenesis 23(5):697–703

    Article  PubMed  CAS  Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    PubMed  CAS  Google Scholar 

  • Formigli L, Ibba-Manneschi L, Perna AM, Pacini A, Polidori L, Nediani C, Modesti PA, Nosi D, Tani A, Celli A, Neri-Serneri GG, Quercioli F, Zecchi-Orlandini S (2003) Altered Cx43 expression during myocardial adaptation to acute and chronic volume overloading. Histol Histopathol 18:359–369

    PubMed  CAS  Google Scholar 

  • Fujimoto K, Nagafuchi A, Tsukita S, Kuraoka A, Ohokuma A, Shibata Y (1997) Dynamics of connexins, E-cadherin and alpha-catenin on cell membranes during gap junction formation. J Cell Sci 110:311–322

    PubMed  CAS  Google Scholar 

  • Goliger JA, Paul DL (1995) Wounding alters epidermal connexin expression and gap junction-mediated intercellular communication. Mol Biol Cell 6:1491–1501

    PubMed  CAS  Google Scholar 

  • Greenwel P, Rubin J, Schwartz M, Hertzberg EL, Rojkind M (1993) Liver fat-storing cell clones obtained from a CCl4-cirrhotic rat are heterogeneous with regard to proliferation, expression of extracellular matrix components, interleukin-6, and connexin 43. Lab Invest 69:210–216

    PubMed  CAS  Google Scholar 

  • Habermann H, Chang WY, Birch L, Mehta P, Prins GS (2001a) Developmental exposure to estrogens alters epithelial cell adhesion and gap junction proteins in the adult rat prostate. Endocrinology 142:359–369

    Google Scholar 

  • Habermann H, Ray V, Habermann W, Prins GS (2001b) Alterations in gap junction protein expression in human benign prostatic hyperplasia and prostate cancer. J Urol 166:2267–2272 (erratum in J Urol 2002;167:655–660)

    Google Scholar 

  • Hoffmann A, Gloe T, Pohl U, Zahler S (2003) Nitric oxide enhances de novo formation of endothelial gap junctions. Cardiovasc Res 60:421–430

    Article  PubMed  CAS  Google Scholar 

  • Hokaiwado N, Asamoto M, Ogawa K, Shirai T (2005) Transgenic disruption of gap junctional intercellular communication enhances early but not late stage hepatocarcinogenesis in the rat. Toxicol Pathol 33:695–701

    Article  PubMed  CAS  Google Scholar 

  • Ikejima K, Watanabe S, Kitamura T, Hirose M, Miyazaki A, Sato N (1995) Hepatocyte growth factor inhibits intercellular communication via gap junctions in rat hepatocytes. Biochem Biophys Res Commun 214:440–446

    Article  PubMed  CAS  Google Scholar 

  • Jamieson S, Going JJ, D’Arcy R, George WD (1998) Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J Pathol 184:37–43

    Article  PubMed  CAS  Google Scholar 

  • Kostin S, Klein G, Szalay Z, Hein S, Bauer EP, Schaper J (2002) Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 54:361–379

    Article  PubMed  CAS  Google Scholar 

  • Kren BT, Kumar NM, Wang SQ, Gilula NB, Steer CJ (1993) Differential regulation of multiple gap junction transcripts and proteins during rat liver regeneration. J Cell Biol 123(3):707–718

    Article  PubMed  CAS  Google Scholar 

  • Krenacs T, Rosendaal M (1998) Connexin43 gap junctions in normal, regenerating, and cultured mouse bone marrow and in human leukemias: their possible involvement in blood formation. Am J Pathol 152:993–1004

    PubMed  CAS  Google Scholar 

  • Krutovskikh VA, Oyamada M, Yamasaki H (1991) Sequential changes of gap-junctional intercellular communications during multistage rat liver carcinogenesis: direct measurement of communication in vivo. Carcinogenesis 12:1701–1706

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Abbas AK, Fausto N (2004) Cellular adaptations, cell injury and cell death. In: Robbins and Cotran Pathologic Basis of Disease, 7th ed. Philadelphia: Saunders, pp 4–46

    Google Scholar 

  • Li S, Nomata K, Hayashi T, Noguchi M, Kanda S, Kanetake H (2002) Transient decrease in gap junction expression during compensatory renal growth in mice. Urology 60:726–730

    Article  PubMed  Google Scholar 

  • Loewenstein WR (1966) Permeability of membrane junctions. Ann N Y Acad Sci 137:441–472

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WR, Kanno Y (1966) Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 209:1248–1249

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WR, Kanno Y (1967) Intercellular communication and tissue growth. I. Cancerous growth. J Cell Biol 33:225–234

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WR, Penn RD (1967) Intercellular communication and tissue growth. II. Tissue regeneration. J Cell Biol 33:235–242

    Article  PubMed  CAS  Google Scholar 

  • Matic M, Petrov IN, Rosenfeld T, Wolosin JM (1997) Alterations in connexin expression and cell communication in healing corneal epithelium. Invest Ophthalmol Vis Sci 38:600–609

    PubMed  CAS  Google Scholar 

  • Miyashita T, Takeda A, Iwai M, Shimazu T (1991) Single administration of hepatotoxic chemicals transiently decreases the gap-junction-protein levels of connexin 32 in rat liver. Eur J Biochem 196:37–42

    Article  PubMed  CAS  Google Scholar 

  • Moennikes O, Buchmann A, Romualdi A, Ott T, Werringloer J, Willecke K, Schwarz M (2000) Lack of phenobarbital-mediated promotion of hepatocarcinogenesis in connexin32-null mice. Cancer Res 60:5087–5091

    PubMed  CAS  Google Scholar 

  • Montecino-Rodriguez E, Leathers H, Dorshkind K (2000) Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood 96:917–924

    PubMed  CAS  Google Scholar 

  • Mori R, Power KT, Wang CM, Martin P, Becker DL (2006) Acute downregulation of connexin43 at wound sites leads to a reduced inflammatory response, enhanced keratinocyte proliferation and wound fibroblast migration. J Cell Sci 119:5193–5203

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka T, Oyamada M, Okajima S, Takamatsu T (1999) Differential expression of gap junction proteins connexin26, 32, and 43 in normal and crush-injured rat sciatic nerves. Close relationship between connexin43 and occludin in the perineurium. J Histochem Cytochem 47:937–948

    PubMed  CAS  Google Scholar 

  • Nakashima Y, Ono T, Yamanoi A, El-Assal ON, Kohno H, Nagasue N (2004) Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol 39:763–768

    Article  PubMed  CAS  Google Scholar 

  • Neveu MJ, Hully JR, Babcock KL, Hertzberg EL, Nicholson BJ, Paul DL, Pitot HC (1994) Multiple mechanisms are responsible for altered expression of gap junction genes during oncogenesis in rat liver. J Cell Sci 107:83–95

    PubMed  CAS  Google Scholar 

  • Oloris SC, Mesnil M, Reis VN, Sakai M, Matsuzaki P, Fonseca Ede S, da Silva TC, Avanzo JL, Sinhorini IL, Guerra JL, Costa-Pinto FA, Maiorka PC, Dagli ML (2007) Hepatic granulomas induced by Schistosoma mansoni in mice deficient for connexin 43 present lower cell proliferation and higher collagen content. Life Sci 80:1228–1235

    Article  PubMed  CAS  Google Scholar 

  • Omori Y, Zaidan Dagli ML, Yamakage K, Yamasaki H (2001) Involvement of gap junctions in tumor suppression: analysis of genetically-manipulated mice. Mutat Res 477:191–196

    PubMed  CAS  Google Scholar 

  • Presley CA, Lee AW, Kastl B, Igbinosa I, Yamada Y, Fishman GI, Gutstein DE, Cancelas JA (2005) Bone marrow connexin-43 expression is critical for hematopoietic regeneration after chemotherapy. Cell Commun Adhes 12:307–317

    Article  PubMed  CAS  Google Scholar 

  • Qiu C, Coutinho P, Frank S, Franke S, Law LY, Martin P, Green CR, Becker DL (2003) Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 13(19):1697–1703

    Article  PubMed  CAS  Google Scholar 

  • Ratkay-Traub I, Hopp B, Bor Z, Dux L, Becker DL, Krenacs T (2001) Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp Eye Res 73:291–302

    Article  PubMed  CAS  Google Scholar 

  • Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834

    Article  PubMed  CAS  Google Scholar 

  • Richards TS, Dunn CA, Carter WG, Usui ML, Olerud JE, Lampe PD (2004) Protein kinase C spatially and temporally regulates gap junctional communication during human wound repair via phosphorylation of connexin43 on serine368. J Cell Biol 167:555–562

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues LCS, Avanzo JL, Oloris SCS, Fukumasu H, Carneiro CS, Lima CE, Costa-Pinto FA, Dagli MLZ, Sinhorini IL (2006) Diminished angiogenesis in mice with heterologous deletion of Gja1 [abstract]. International Conference on the Physiological and Pathological Importance of Gap Junction, Tokyo, Japan, p 103

  • Saito T, Nishimura M, Kudo R, Yamasaki H (2001) Suppressed gap junctional intercellular communication in carcinogenesis of endometrium. Int J Cancer 93:317–323

    Article  PubMed  CAS  Google Scholar 

  • Saitoh M, Oyamada M, Oyamada Y, Kaku T, Mori M (1997) Changes in the expression of gap junction proteins (connexins) in hamster tongue epithelium during wound healing and carcinogenesis. Carcinogenesis 18:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto H, Oyamada M, Enomoto K, Mori M (1992) Differential changes in expression of gap junction proteins connexin 26 and 32 during hepatocarcinogenesis in rats. Jpn J Cancer Res 83:1210–1215

    PubMed  CAS  Google Scholar 

  • Sawey MJ, Goldschmidt MH, Risek B, Gilula NB, Lo CW (1996) Perturbation in connexin 43 and connexin 26 gap-junction expression in mouse skin hyperplasia and neoplasia. Mol Carcinog 17:49–61

    Article  PubMed  CAS  Google Scholar 

  • Scherer SS, Deschenes SM, Xu YT, Grinspan JB, Fischbeck KH, Paul DL (1995) Connexin32 is a myelin-related protein in the PNS and CNS. J Neurosci 15:8281–8294

    PubMed  CAS  Google Scholar 

  • Silva PTD, Oloris SCS, Avanzo JL, Dagli MLZ (2006) Alterations in Cx43 phosphorylated isoforms during compensatory kidney hypertrophy/hyperplasia in mice. Annals of the International Conference on Physiological and pathological importance of gap junctions, Tokyo, Japan, p 65, November 2006

  • Suarez S, Ballmer-Hofer K (2001) VEGF transiently disrupts gap junctional communication in endothelial cells. J Cell Sci 114:1229–1235

    PubMed  CAS  Google Scholar 

  • Sugiyama Y, Ohta H (1990) Changes in density and distribution of gap junctions after partial hepatectomy: immunohistochemical and morphometric studies. Arch Histol Cytol 53:71–80

    PubMed  CAS  Google Scholar 

  • Sunderkotter C, Beil W, Roth J, Sorg C (1991) Cellular events associated with inflammatory angiogenesis in the mouse cornea. Am J Pathol 138:931–939

    PubMed  CAS  Google Scholar 

  • Teixeira TF, Silva TC, Fukumasu H, Lima CE, Guerra JL, Dagli MLZ (2007) Histological alterations in the livers of cx43-deficient mice submitted to a cholestasis model. Life Sci (in press)

  • Temme A, Buchmann A, Gabriel HD, Nelles E, Schwarz M, Willecke K (1997) High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr Biol 7:713–716

    Article  PubMed  CAS  Google Scholar 

  • Temme A, Ott T, Dombrowski F, Willecke K (2000) The extent of synchronous initiation and termination of DNA synthesis in regenerating mouse liver is dependent on connexin32 expressing gap junctions. J Hepatol 32:627–635

    Article  PubMed  CAS  Google Scholar 

  • Thuringer D (2004) The vascular endothelial growth factor-induced disruption of gap junctions is relayed by an autocrine communication via ATP release in coronary capillary endothelium. Ann N Y Acad Sci 1030:14–27

    Article  PubMed  CAS  Google Scholar 

  • Torres LN, Matera JM, Vasconcellos CH, Avanzo JL, Hernandez-Blazquez FJ, Dagli ML (2005) Expression of connexins 26 and 43 in canine hyperplastic and neoplastic mammary glands. Vet Pathol 42:633–641

    Article  PubMed  CAS  Google Scholar 

  • Traub O, Druge PM, Willecke K (1983) Degradation and resynthesis of gap junction protein in plasma membranes of regenerating liver after partial hepatectomy or cholestasis. Proc Natl Acad Sci USA 80:755–759

    Article  PubMed  CAS  Google Scholar 

  • Trosko JE, Ruch RJ (1998) Cell-cell communication in carcinogenesis. Front Biosci 153:d208–d236

    Google Scholar 

  • Tsuda H, Asamoto M, Baba-Toriyama H, Iwahori Y, Hori T, Kim DJ, Tsuchiya T, Mutai M, Yamasaki H (1995) Clofibrate-induced neoplastic development in the rat liver is associated with decreased connexin 32 expression but not with a co-ordinated shift in expression of marker enzymes. Toxicol Lett 82–83:693–699

    Article  PubMed  Google Scholar 

  • Vestweber D (2000) Molecular mechanisms that control endothelial cell contacts. J Pathol 190:281–291

    Article  PubMed  CAS  Google Scholar 

  • Walker DL, Vacha SJ, Kirby ML, Lo CW (2005) Connexin43 deficiency causes dysregulation of coronary vasculogenesis. Dev Biol 284:479–498

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Kojima T, Murata M, Takano K, Go M, Hatakeyama N, Chiba H, Sawada N (2005) p38 MAP-kinase regulates function of gap and tight junctions during regeneration of rat hepatocytes. J Hepatol 42:707–718

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka K, Nouchi T, Kohashi T, Marumo F, Sato C (2000) Expression of gap junction protein connexin 32 in chronic liver diseases. Liver 20:104–147

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Krutovskikh V, Mesnil M, Columbano A, Tsuda H, Ito N (1993) Gap junctional intercellular communication and cell proliferation during rat liver carcinogenesis. Environ Health Perspect 101(Suppl 5):191–197

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli ML, Omori Y (1999) Role of connexin (gap junction) genes in cell growth control and carcinogenesis. C R Acad Sci III 322:151–159

    PubMed  CAS  Google Scholar 

  • Yeh HI, Lai YJ, Chang HM, Ko YS, Severs NJ, Tsai CH (2000) Multiple connexin expression in regenerating arterial endothelial gap junctions. Arterioscler Thromb Vasc Biol 20:1753–1762

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lúcia Zaidan Dagli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidan Dagli, M.L., Hernandez-Blazquez, F.J. Roles of Gap Junctions and Connexins in Non-Neoplastic Pathological Processes in which Cell Proliferation Is Involved. J Membrane Biol 218, 79–91 (2007). https://doi.org/10.1007/s00232-007-9045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9045-9

Keywords

Navigation