Skip to main content

Advertisement

Log in

Connexins: junctional and non-junctional modulators of proliferation

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Mounting evidence indicates that dysregulation of gap junctions and their structural subunits—connexins—often occurs in, and sometimes causes, a variety of proliferative disorders, including cancer. Connexin-mediated regulation of cell proliferation is complex and may involve modulation of gap junction intercellular communication (GJIC), hemichannel signalling, or gap junction-independent paths. However, the exact mechanisms linking connexins to proliferation remain poorly defined and a number of contradictory studies report both pro- and anti-proliferative effects, effects that often depend on the cell or tissue type or the microenvironment. The present review covers junctional and non-junctional regulation of proliferation by connexins, with a particular emphasis on their association with cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aasen T, Hodgins MB, Edward M, Graham SV (2003) The relationship between connexins, gap junctions, tissue architecture and tumour invasion, as studied in a novel in vitro model of HPV-16-associated cervical cancer progression. Oncogene 22:7969–7980

    PubMed  Google Scholar 

  • Aasen T, Graham SV, Edward M, Hodgins MB (2005) Reduced expression of multiple gap junction proteins is a feature of cervical dysplasia. Mol Cancer 4:31

    PubMed Central  PubMed  Google Scholar 

  • Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G, Edel M, Boue S, Izpisua Belmonte JC (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284

    CAS  PubMed  Google Scholar 

  • Ableser MJ, Penuela S, Lee J, Shao Q, Laird DW (2014) Connexin43 reduces melanoma growth within a keratinocyte microenvironment and during tumorigenesis in vivo. J Biol Chem 289:1592–1603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Artesi M, Kroonen J, Bredel M, Nguyen-Khac M, Deprez M, Schoysman L, Poulet C, Chakravarti A, Kim H, Scholtens D, Seute T, Rogister B, Bours V, Robe PA (2014) Connexin 30 expression inhibits growth of human malignant gliomas but protects them against radiation therapy. Neuro-oncology (in press)

  • Aucher A, Rudnicka D, Davis DM (2013) MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J Immunol 191:6250–6260

    CAS  PubMed  Google Scholar 

  • Avanzo JL, Mennecier G, Mesnil M, Hernandez-Blazquez FJ, Fukumasu H, da Silva TC, Rao KV, Dagli ML (2007) Deletion of a single allele of Cx43 is associated with a reduction in the gap junctional intercellular communication and increased cell proliferation of mouse lung pneumocytes type II. Cell Prolif 40:411–421

    CAS  PubMed  Google Scholar 

  • Bakirtzis G, Choudhry R, Aasen T, Shore L, Brown K, Bryson S, Forrow S, Tetley L, Finbow M, Greenhalgh D, Hodgins M (2003) Targeted epidermal expression of mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders. Hum Mol Genet 12:1737–1744

    CAS  PubMed  Google Scholar 

  • Berger AC, Kelly JJ, Lajoie P, Shao Q, Laird DW (2014) Mutations in Cx30 that are linked to skin disease and non-syndromic hearing loss exhibit several distinct cellular pathologies. J Cell Sci 127:1751–1764

    CAS  PubMed  Google Scholar 

  • Bradshaw SL, Naus CC, Zhu D, Kidder GM, Han VK (1993) Insulin-like growth factor binding protein-4 gene expression is induced by transfection of gap junction connexin43 gene in a C6 glioma cell line. Growth Regul 3:26–29

    CAS  PubMed  Google Scholar 

  • Burt JM, Nelson TK, Simon AM, Fang JS (2008) Connexin 37 profoundly slows cell cycle progression in rat insulinoma cells. Am J Physiol Cell Physiol 295:C1103–C1112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Butkevich E, Hulsmann S, Wenzel D, Shirao T, Duden R, Majoul I (2004) Drebrin is a novel connexin-43 binding partner that links gap junctions to the submembrane cytoskeleton. Curr Biol CB 14:650–658

    CAS  Google Scholar 

  • Carystinos GD, Kandouz M, Alaoui-Jamali MA, Batist G (2003) Unexpected induction of the human connexin 43 promoter by the ras signaling pathway is mediated by a novel putative promoter sequence. Mol Pharmacol 63:821–831

    CAS  PubMed  Google Scholar 

  • Celetti SJ, Cowan KN, Penuela S, Shao Q, Churko J, Laird DW (2010) Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J Cell Sci 123:1363–1372

    CAS  PubMed  Google Scholar 

  • Chandrasekhar A, Bera AK (2012) Hemichannels: permeants and their effect on development, physiology and death. Cell Biochem Funct 30:89–100

    CAS  PubMed  Google Scholar 

  • Chandrasekhar A, Kalmykov EA, Polusani SR, Mathis SA, Zucker SN, Nicholson BJ (2013) Intercellular redistribution of cAMP underlies selective suppression of cancer cell growth by connexin26. PLoS ONE 8:e82335

    PubMed Central  PubMed  Google Scholar 

  • Charles AC, Naus CC, Zhu D, Kidder GM, Dirksen ER, Sanderson MJ (1992) Intercellular calcium signaling via gap junctions in glioma cells. J Cell Biol 118:195–201

    CAS  PubMed  Google Scholar 

  • Chen SC, Pelletier DB, Ao P, Boynton AL (1995) Connexin43 reverses the phenotype of transformed cells and alters their expression of cyclin/cyclin-dependent kinases. Cell Growth Differ Mol Biol 6:681–690

    CAS  Google Scholar 

  • Chen Z, Evans WH, Pflugfelder SC, Li DQ (2006) Gap junction protein connexin 43 serves as a negative marker for a stem cell-containing population of human limbal epithelial cells. Stem Cells 24:1265–1273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng A, Tang H, Cai J, Zhu M, Zhang X, Rao M, Mattson MP (2004) Gap junctional communication is required to maintain mouse cortical neural progenitor cells in a proliferative state. Dev Biol 272:203–216

    CAS  PubMed  Google Scholar 

  • Churko JM, Shao Q, Gong XQ, Swoboda KJ, Bai D, Sampson J, Laird DW (2011) Human dermal fibroblasts derived from oculodentodigital dysplasia patients suggest that patients may have wound-healing defects. Hum Mutat 32:456–466

    PubMed Central  CAS  PubMed  Google Scholar 

  • Churko JM, Kelly JJ, Macdonald A, Lee J, Sampson J, Bai D, Laird DW (2012) The G60S Cx43 mutant enhances keratinocyte proliferation and differentiation. Exp Dermatol 21:612–618

    CAS  PubMed  Google Scholar 

  • Ciovacco WA, Goldberg CG, Taylor AF, Lemieux JM, Horowitz MC, Donahue HJ, Kacena MA (2009) The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone 44:80–86

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cottin S, Gould PV, Cantin L, Caruso M (2011) Gap junctions in human glioblastomas: implications for suicide gene therapy. Cancer Gene Ther 18:674–681

    CAS  PubMed  Google Scholar 

  • Coutinho P, Qiu C, Frank S, Wang CM, Brown T, Green CR, Becker DL (2005) Limiting burn extension by transient inhibition of Connexin43 expression at the site of injury. Br J Plast Surg 58:658–667

    CAS  PubMed  Google Scholar 

  • Cronier L, Crespin S, Strale PO, Defamie N, Mesnil M (2009) Gap junctions and cancer: new functions for an old story. Antioxid Redox Signal 11:323–338

    CAS  PubMed  Google Scholar 

  • Czyz J (2008) The stage-specific function of gap junctions during tumourigenesis. Cell Mol Biol Lett 13:92–102

    CAS  PubMed  Google Scholar 

  • Czyz J, Szpak K, Madeja Z (2012) The role of connexins in prostate cancer promotion and progression. Nat Rev Urol 9:274–282

    CAS  PubMed  Google Scholar 

  • Dai P, Nakagami T, Tanaka H, Hitomi T, Takamatsu T (2007) Cx43 mediates TGF-beta signaling through competitive Smads binding to microtubules. Mol Biol Cell 18:2264–2273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dang X, Doble BW, Kardami E (2003) The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth. Mol Cell Biochem 242:35–38

    CAS  PubMed  Google Scholar 

  • Dermietzel R, Yancey SB, Traub O, Willecke K, Revel JP (1987) Major loss of the 28-kD protein of gap junction in proliferating hepatocytes. J Cell Biol 105:1925–1934

    CAS  PubMed  Google Scholar 

  • Dermietzel R, Gao Y, Scemes E, Vieira D, Urban M, Kremer M, Bennett MV, Spray DC (2000) Connexin43 null mice reveal that astrocytes express multiple connexins. Brain Res Brain Res Rev 32:45–56

    CAS  PubMed  Google Scholar 

  • Desforges B, Curmi PA, Bounedjah O, Nakib S, Hamon L, De Bandt JP, Pastre D (2013) An intercellular polyamine transfer via gap junctions regulates proliferation and response to stress in epithelial cells. Mol Biol Cell 24:1529–1543

    PubMed Central  CAS  PubMed  Google Scholar 

  • Duffy HS, Iacobas I, Hotchkiss K, Hirst-Jensen BJ, Bosco A, Dandachi N, Dermietzel R, Sorgen PL, Spray DC (2007) The gap junction protein connexin32 interacts with the Src homology 3/hook domain of discs large homolog 1. J Biol Chem 282:9789–9796

    CAS  PubMed  Google Scholar 

  • Dyce PW, Li D, Barr KJ, Kidder GM (2014) Connexin43 is required for the maintenance of multipotency in skin-derived stem cells. Stem Cells Dev 23:1636–1646

    CAS  PubMed  Google Scholar 

  • Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G (2004) Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 13:1703–1714

    CAS  PubMed  Google Scholar 

  • Fabregat I, Fernando J, Mainez J, Sancho P (2013) TGF-beta signaling in cancer treatment. Curr Pharm Des 20:2934–2947

    Google Scholar 

  • Flachon V, Tonoli H, Selmi-Ruby S, Durand C, Rabilloud R, Rousset B, Munari-Silem Y (2002) Thyroid cell proliferation in response to forced expression of gap junction proteins. Eur J Cell Biol 81:243–252

    CAS  PubMed  Google Scholar 

  • Franco L, Zocchi E, Usai C, Guida L, Bruzzone S, Costa A, De Flora A (2001) Paracrine roles of NAD+ and cyclic ADP-ribose in increasing intracellular calcium and enhancing cell proliferation of 3T3 fibroblasts. J Biol Chem 276:21642–21648

    CAS  PubMed  Google Scholar 

  • Fraser FC, Der Kaloustian VM (2001) A man, a syndrome, a gene: Clouston’s hidrotic ectodermal dysplasia (HED). Am J Med Genet 100:164–168

    CAS  PubMed  Google Scholar 

  • Freidin M, Asche S, Bargiello TA, Bennett MV, Abrams CK (2009) Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1). Proc Natl Acad Sci U S A 106:3567–3572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fu CT, Bechberger JF, Ozog MA, Perbal B, Naus CC (2004) CCN3 (NOV) interacts with connexin43 in C6 glioma cells: possible mechanism of connexin-mediated growth suppression. J Biol Chem 279:36943–36950

    CAS  PubMed  Google Scholar 

  • Fujimoto E, Satoh H, Negishi E, Ueno K, Nagashima Y, Hagiwara K, Yamasaki H, Yano T (2004) Negative growth control of renal cell carcinoma cell by connexin 32: possible involvement of Her-2. Mol Carcinog 40:135–142

    CAS  PubMed  Google Scholar 

  • Furlan F, Lecanda F, Screen J, Civitelli R (2001) Proliferation, differentiation and apoptosis in connexin43-null osteoblasts. Cell Commun Adhes 8:367–371

    CAS  PubMed  Google Scholar 

  • Gellhaus A, Dong X, Propson S, Maass K, Klein-Hitpass L, Kibschull M, Traub O, Willecke K, Perbal B, Lye SJ, Winterhager E (2004) Connexin43 interacts with NOV: a possible mechanism for negative regulation of cell growth in choriocarcinoma cells. J Biol Chem 279:36931–36942

    CAS  PubMed  Google Scholar 

  • Gellhaus A, Wotzlaw C, Otto T, Fandrey J, Winterhager E (2010) More insights into the CCN3/Connexin43 interaction complex and its role for signaling. J Cell Biochem 110:129–140

    CAS  PubMed  Google Scholar 

  • Giepmans BN, Moolenaar WH (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 8:931–934

    CAS  PubMed  Google Scholar 

  • Giepmans BN, Hengeveld T, Postma FR, Moolenaar WH (2001a) Interaction of c-Src with gap junction protein connexin-43. Role in the regulation of cell-cell communication. J Biol Chem 276:8544–8549

    CAS  PubMed  Google Scholar 

  • Giepmans BN, Verlaan I, Hengeveld T, Janssen H, Calafat J, Falk MM, Moolenaar WH (2001b) Gap junction protein connexin-43 interacts directly with microtubules. Curr Biol 11:1364–1368

    CAS  PubMed  Google Scholar 

  • Gonzalez-Nieto D, Li L, Kohler A, Ghiaur G, Ishikawa E, Sengupta A, Madhu M, Arnett JL, Santho RA, Dunn SK, Fishman GI, Gutstein DE, Civitelli R, Barrio LC, Gunzer M, Cancelas JA (2012) Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors. Blood 119:5144–5154

    PubMed Central  CAS  PubMed  Google Scholar 

  • Good ME, Nelson TK, Simon AM, Burt JM (2011) A functional channel is necessary for growth suppression by Cx37. J Cell Sci 124:2448–2456

    PubMed Central  CAS  PubMed  Google Scholar 

  • Good ME, Ek-Vitorin JF, Burt JM (2014) Structural determinants and proliferative consequences of connexin 37 hemichannel function in insulinoma cells. J Biol Chem 289:30379–30386

    CAS  PubMed  Google Scholar 

  • Gramsch B, Gabriel HD, Wiemann M, Grummer R, Winterhager E, Bingmann D, Schirrmacher K (2001) Enhancement of connexin 43 expression increases proliferation and differentiation of an osteoblast-like cell line. Exp Cell Res 264:397–407

    CAS  PubMed  Google Scholar 

  • Han Y, Zhang PJ, Chen T, Yum SW, Pasha T, Furth EE (2011) Connexin43 expression increases in the epithelium and stroma along the colonic neoplastic progression pathway: implications for its oncogenic role. Gastroenterol Res Pract 2011:561719

    PubMed Central  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    CAS  PubMed  Google Scholar 

  • Hartfield EM, Rinaldi F, Glover CP, Wong LF, Caldwell MA, Uney JB (2011) Connexin 36 expression regulates neuronal differentiation from neural progenitor cells. PLoS ONE 6:e14746

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hatakeyama T, Dai P, Harada Y, Hino H, Tsukahara F, Maru Y, Otsuji E, Takamatsu T (2013) Connexin43 functions as a novel interacting partner of heat shock cognate protein 70. Sci Rep 3:2719

    PubMed Central  PubMed  Google Scholar 

  • Herrero-Gonzalez S, Gangoso E, Giaume C, Naus CC, Medina JM, Tabernero A (2010) Connexin43 inhibits the oncogenic activity of c-Src in C6 glioma cells. Oncogene 29:5712–5723

    CAS  PubMed  Google Scholar 

  • Hoptak-Solga AD, Nielsen S, Jain I, Thummel R, Hyde DR, Iovine MK (2008) Connexin43 (GJA1) is required in the population of dividing cells during fin regeneration. Dev Biol 317:541–548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang RP, Hossain MZ, Sehgal A, Boynton AL (1999) Reduced connexin43 expression in high-grade human brain glioma cells. J Surg Oncol 70:21–24

    CAS  PubMed  Google Scholar 

  • Huang R, Lin Y, Wang CC, Gano J, Lin B, Shi Q, Boynton A, Burke J, Huang RP (2002) Connexin 43 suppresses human glioblastoma cell growth by down-regulation of monocyte chemotactic protein 1, as discovered using protein array technology. Cancer Res 62:2806–2812

    CAS  PubMed  Google Scholar 

  • Iacobas DA, Iacobas S, Urban-Maldonado M, Spray DC (2005) Sensitivity of the brain transcriptome to connexin ablation. Biochim Biophys Acta 1711:183–196

    CAS  PubMed  Google Scholar 

  • Iacobas DA, Iacobas S, Spray DC (2007) Connexin-dependent transcellular transcriptomic networks in mouse brain. Prog Biophys Mol Biol 94:169–185

    CAS  PubMed  Google Scholar 

  • Inose T, Kato H, Kimura H, Faried A, Tanaka N, Sakai M, Sano A, Sohda M, Nakajima M, Fukai Y, Miyazaki T, Masuda N, Fukuchi M, Kuwano H (2009) Correlation between connexin 26 expression and poor prognosis of esophageal squamous cell carcinoma. Ann Surg Oncol 16:1704–1710

    PubMed  Google Scholar 

  • Ionta M, Ferreira RA, Pfister SC, Machado-Santelli GM (2009) Exogenous Cx43 expression decrease cell proliferation rate in rat hepatocarcinoma cells independently of functional gap junction. Cancer Cell Int 9:22

    PubMed Central  PubMed  Google Scholar 

  • Iossa S, Marciano E, Franze A (2011) GJB2 gene mutations in syndromic skin diseases with sensorineural hearing loss. Curr Genom 12:475–785

    CAS  Google Scholar 

  • Ishikawa M, Iwamoto T, Fukumoto S, Yamada Y (2014) Pannexin 3 inhibits proliferation of osteoprogenitor cells by regulating Wnt and p21 signaling. J Biol Chem 289:2839–2851

    PubMed Central  CAS  PubMed  Google Scholar 

  • Iwamoto T, Nakamura T, Doyle A, Ishikawa M, de Vega S, Fukumoto S, Yamada Y (2010) Pannexin 3 regulates intracellular ATP/cAMP levels and promotes chondrocyte differentiation. J Biol Chem 285:18948–18958

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jamieson S, Going JJ, D’Arcy R, George WD (1998) Expression of gap junction proteins connexin 26 and connexin 43 in normal human breast and in breast tumours. J Pathol 184:37–43

    CAS  PubMed  Google Scholar 

  • Janssen-Timmen U, Traub O, Dermietzel R, Rabes HM, Willecke K (1986) Reduced number of gap junctions in rat hepatocarcinomas detected by monoclonal antibody. Carcinogenesis 7:1475–1482

    CAS  PubMed  Google Scholar 

  • Jee H, Lee SH, Park JW, Lee BR, Nam KT, Kim DY (2013) Connexin32 inhibits gastric carcinogenesis through cell cycle arrest and altered expression of p21Cip1 and p27Kip1. BMB Rep 46:25–30

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang JX, Gu S (2005) Gap junction- and hemichannel-independent actions of connexins. Biochim Biophys Acta 1711:208–214

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jinn Y, Ichioka M, Marumo F (1998) Expression of connexin32 and connexin43 gap junction proteins and E-cadherin in human lung cancer. Cancer Lett 127:161–169

    CAS  PubMed  Google Scholar 

  • Johnstone SR, Best AK, Wright CS, Isakson BE, Errington RJ, Martin PE (2010) Enhanced connexin 43 expression delays intra-mitotic duration and cell cycle traverse independently of gap junction channel function. J Cell Biochem 110:772–782

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kalra J, Shao Q, Qin H, Thomas T, Alaoui-Jamali MA, Laird DW (2006) Cx26 inhibits breast MDA-MB-435 cell tumorigenic properties by a gap junctional intercellular communication-independent mechanism. Carcinogenesis 27:2528–2537

    CAS  PubMed  Google Scholar 

  • Kanczuga-Koda L, Sulkowska M, Koda M, Reszec J, Famulski W, Baltaziak M, Sulkowski S (2003) Expression of connexin 43 in breast cancer in comparison with mammary dysplasia and the normal mammary gland. Folia Morphol (Warsz) 62:439–442

    Google Scholar 

  • Kanczuga-Koda L, Koda M, Sulkowski S, Wincewicz A, Zalewski B, Sulkowska M (2010) Gradual loss of functional gap junction within progression of colorectal cancer – a shift from membranous CX32 and CX43 expression to cytoplasmic pattern during colorectal carcinogenesis. In Vivo 24:101–107

    CAS  PubMed  Google Scholar 

  • Kawasaki Y, Omori Y, Li Q, Nishikawa Y, Yoshioka T, Yoshida M, Ishikawa K, Enomoto K (2010) Cytoplasmic accumulation of connexin32 expands cancer stem cell population in human HuH7 hepatoma cells by enhancing its self-renewal. Int J Cancer 128:51–62

    Google Scholar 

  • Kelly SC, Ratajczak P, Keller M, Purcell SM, Griffin T, Richard G (2006) A novel GJA 1 mutation in oculo-dento-digital dysplasia with curly hair and hyperkeratosis. Eur J Dermatol 16:241–245

    PubMed  Google Scholar 

  • Khodosevich K, Zuccotti A, Kreuzberg MM, Le Magueresse C, Frank M, Willecke K, Monyer H (2012) Connexin45 modulates the proliferation of transit-amplifying precursor cells in the mouse subventricular zone. Proc Natl Acad Sci U S A 109:20107–20112

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kihara AH, Santos TO, Osuna-Melo EJ, Paschon V, Vidal KS, Akamine PS, Castro LM, Resende RR, Hamassaki DE, Britto LR (2010) Connexin-mediated communication controls cell proliferation and is essential in retinal histogenesis. Int J Dev Neurosci 28:39–52

    CAS  PubMed  Google Scholar 

  • King TJ, Fukushima LH, Donlon TA, Hieber AD, Shimabukuro KA, Bertram JS (2000) Correlation between growth control, neoplastic potential and endogenous connexin43 expression in HeLa cell lines: implications for tumor progression. Carcinogenesis 21:311–315

    CAS  PubMed  Google Scholar 

  • Koffler L, Roshong S, Kyu Park I, Cesen-Cummings K, Thompson DC, Dwyer-Nield LD, Rice P, Mamay C, Malkinson AM, Ruch RJ (2000) Growth inhibition in G(1) and altered expression of cyclin D1 and p27(kip-1)after forced connexin expression in lung and liver carcinoma cells. J Cell Biochem 79:347–354

    CAS  PubMed  Google Scholar 

  • Kojima T, Fort A, Tao M, Yamamoto M, Spray DC (2001a) Gap junction expression and cell proliferation in differentiating cultures of Cx43 KO mouse hepatocytes. Am J Physiol Gastrointest Liver Physiol 281:G1004–G1013

    CAS  PubMed  Google Scholar 

  • Kojima T, Srinivas M, Fort A, Urban M, Lee GH, Sawada N, Spray DC (2001b) Growth-suppressive function of human connexin32 in a conditional immortalized mouse hepatocyte cell line. In Vitro Cell Dev Biol Anim 37:589–598

    CAS  PubMed  Google Scholar 

  • Kretz M, Euwens C, Hombach S, Eckardt D, Teubner B, Traub O, Willecke K, Ott T (2003) Altered connexin expression and wound healing in the epidermis of connexin-deficient mice. J Cell Sci 116:3443–3452

    CAS  PubMed  Google Scholar 

  • Kyo N, Yamamoto H, Takeda Y, Ezumi K, Ngan CY, Terayama M, Miyake M, Takemasa I, Ikeda M, Doki Y, Dono K, Sekimoto M, Nojima H, Monden M (2008) Overexpression of connexin 26 in carcinoma of the pancreas. Oncol Rep 19:627–631

    PubMed  Google Scholar 

  • Labarthe MP, Bosco D, Saurat JH, Meda P, Salomon D (1998) Upregulation of connexin 26 between keratinocytes of psoriatic lesions. J Invest Dermatol 111:72–76

    CAS  PubMed  Google Scholar 

  • Lai CP, Bechberger JF, Thompson RJ, MacVicar BA, Bruzzone R, Naus CC (2007) Tumor-suppressive effects of pannexin 1 in C6 glioma cells. Cancer Res 67:1545–1554

    CAS  PubMed  Google Scholar 

  • Lai CP, Bechberger JF, Naus CC (2009) Pannexin2 as a novel growth regulator in C6 glioma cells. Oncogene 28:4402–4408

    CAS  PubMed  Google Scholar 

  • Laird DW, Fistouris P, Batist G, Alpert L, Huynh HT, Carystinos GD, Alaoui-Jamali MA (1999) Deficiency of connexin43 gap junctions is an independent marker for breast tumors. Cancer Res 59:4104–4110

    CAS  PubMed  Google Scholar 

  • Lee HJ, Rhee SK (2011) Growth-suppressing activity of the transfected Cx26 on BICR-M1Rk breast cancer cell line. J Microbiol Biotechnol 21:477–482

    CAS  PubMed  Google Scholar 

  • Lemaitre G, Sivan V, Lamartine J, Cosset JM, Cavelier-Balloy B, Salomon D, Waksman G, Martin MT (2006) Connexin 30, a new marker of hyperproliferative epidermis. Br J Dermatol 155:844–846

    CAS  PubMed  Google Scholar 

  • Lemcke H, Kuznetsov SA (2013) Involvement of connexin43 in the EGF/EGFR signalling during self-renewal and differentiation of neural progenitor cells. Cell Signal 25:2676–2684

    CAS  PubMed  Google Scholar 

  • Lim MC, Maubach G, Zhuo L (2009) TGF-beta1 down-regulates connexin 43 expression and gap junction intercellular communication in rat hepatic stellate cells. Eur J Cell Biol 88:719–730

    CAS  PubMed  Google Scholar 

  • Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P (2011) Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 71:1550–1560

    CAS  PubMed  Google Scholar 

  • Loewenstein WR, Kanno Y (1966) Intercellular communication and the control of tissue growth: lack of communication between cancer cells. Nature 209:1248–1249

    CAS  PubMed  Google Scholar 

  • Loewenstein WR, Kanno Y (1967) Intercellular communication and tissue growth. I. Cancerous growth. J Cell Biol 33:225–234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Loo LW, Berestecky JM, Kanemitsu MY, Lau AF (1995) pp60src-mediated phosphorylation of connexin 43, a gap junction protein. J Biol Chem 270:12751–12761

    CAS  PubMed  Google Scholar 

  • Lucke T, Choudhry R, Thom R, Selmer IS, Burden AD, Hodgins MB (1999) Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J Invest Dermatol 112:354–361

    CAS  PubMed  Google Scholar 

  • Macari F, Landau M, Cousin P, Mevorah B, Brenner S, Panizzon R, Schorderet DF, Hohl D, Huber M (2000) Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am J Hum Genet 67:1296–1301

    PubMed Central  CAS  PubMed  Google Scholar 

  • Macdonald AI, Sun P, Hernandez-Lopez H, Aasen T, Hodgins MB, Edward M, Roberts S, Massimi P, Thomas M, Banks L, Graham SV (2012) A functional interaction between the MAGUK protein hDlg and the gap junction protein Connexin 43 in cervical tumour cells. Biochem J 446:9–21

    CAS  PubMed  Google Scholar 

  • Malmersjo S, Rebellato P, Smedler E, Planert H, Kanatani S, Liste I, Nanou E, Sunner H, Abdelhady S, Zhang S, Andang M, El Manira A, Silberberg G, Arenas E, Uhlen P (2013) Neural progenitors organize in small-world networks to promote cell proliferation. Proc Natl Acad Sci U S A 110:E1524–E1532

    PubMed Central  PubMed  Google Scholar 

  • Mao AJ, Bechberger J, Lidington D, Galipeau J, Laird DW, Naus CC (2000) Neuronal differentiation and growth control of neuro-2a cells after retroviral gene delivery of connexin43. J Biol Chem 275:34407–34414

    CAS  PubMed  Google Scholar 

  • Martin PE, Easton JA, Hodgins MB, Wright CS (2014) Connexins: sensors of epidermal integrity that are therapeutic targets. FEBS Lett 588:1304–1314

    CAS  PubMed  Google Scholar 

  • Martyn KD, Kurata WE, Warn-Cramer BJ, Burt JM, TenBroek E, Lau AF (1997) Immortalized connexin43 knockout cell lines display a subset of biological properties associated with the transformed phenotype. Cell Growth Differ Mol Biol 8:1015–1027

    CAS  Google Scholar 

  • Matic M, Simon M (2003) Label-retaining cells (presumptive stem cells) of mice vibrissae do not express gap junction protein connexin 43. J Invest Dermatol 8:91–95

    CAS  Google Scholar 

  • Matic M, Evans WH, Brink PR, Simon M (2002) Epidermal stem cells do not communicate through gap junctions. J Invest Dermatol 118:110–116

    CAS  PubMed  Google Scholar 

  • Matsuyama D, Kawahara K (2009) Proliferation of neonatal cardiomyocytes by connexin43 knockdown via synergistic inactivation of p38 MAPK and increased expression of FGF1. Basic Res Cardiol 104:631–642

    CAS  PubMed  Google Scholar 

  • McLachlan E, Shao Q, Laird DW (2007) Connexins and gap junctions in mammary gland development and breast cancer progression. J Membr Biol 218:107–121

    CAS  PubMed  Google Scholar 

  • McNutt NS, Weinstein RS (1969) Carcinoma of the cervix: deficiency of nexus intercellular junctions. Science 165:597–599

    CAS  PubMed  Google Scholar 

  • McNutt NS, Hershberg RA, Weinstein RS (1971) Further observations on the occurrence of nexuses in benign and malignant human cervical epithelium. J Cell Biol 51:805–825

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mehta PP, Perez-Stable C, Nadji M, Mian M, Asotra K, Roos BA (1999) Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev Genet 24:91–110

    CAS  PubMed  Google Scholar 

  • Mese G, Sellitto C, Li L, Wang HZ, Valiunas V, Richard G, Brink PR, White TW (2011) The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome. Mol Biol Cell 22:4776–4786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mesnil M (2002) Connexins and cancer. Biol Cell 94:493–500

    CAS  PubMed  Google Scholar 

  • Mesnil M, Krutovskikh V, Piccoli C, Elfgang C, Traub O, Willecke K, Yamasaki H (1995) Negative growth control of HeLa cells by connexin genes: connexin species specificity. Cancer Res 55:629–639

    CAS  PubMed  Google Scholar 

  • Momiyama M, Omori Y, Ishizaki Y, Nishikawa Y, Tokairin T, Ogawa J, Enomoto K (2003) Connexin26-mediated gap junctional communication reverses the malignant phenotype of MCF-7 breast cancer cells. Cancer Sci 94:501–507

    CAS  PubMed  Google Scholar 

  • Moorby CD (2000) A connexin 43 mutant lacking the carboxyl cytoplasmic domain inhibits both growth and motility of mouse 3T3 fibroblasts. Mol Carcinog 28:23–30

    CAS  PubMed  Google Scholar 

  • Moorby C, Patel M (2001) Dual functions for connexins: Cx43 regulates growth independently of gap junction formation. Exp Cell Res 271:238–248

    CAS  PubMed  Google Scholar 

  • Morel S, Burnier L, Roatti A, Chassot A, Roth I, Sutter E, Galan K, Pfenniger A, Chanson M, Kwak BR (2010) Unexpected role for the human Cx37 C1019T polymorphism in tumour cell proliferation. Carcinogenesis 31:1922–1931

    CAS  PubMed  Google Scholar 

  • Naus CC, Laird DW (2010) Implications and challenges of connexin connections to cancer. Nat Rev Cancer 10:435–441

    CAS  PubMed  Google Scholar 

  • Naus CC, Bechberger JF, Zhang Y, Venance L, Yamasaki H, Juneja SC, Kidder GM, Giaume C (1997) Altered gap junctional communication, intercellular signaling, and growth in cultured astrocytes deficient in connexin43. J Neurosci Res 49:528–540

    CAS  PubMed  Google Scholar 

  • Nelson TK, Sorgen PL, Burt JM (2013) The carboxyl terminus and pore-forming domain properties specific to Cx37 are necessary for Cx37 mediated suppression of insulinoma cell proliferation. Am J Physiol Cell Physiol 305:C1246–C1256

    PubMed Central  CAS  PubMed  Google Scholar 

  • Olbina G, Eckhart W (2003) Mutations in the second extracellular region of connexin 43 prevent localization to the plasma membrane, but do not affect its ability to suppress cell growth. Mol Cancer Res 1:690–700

    CAS  PubMed  Google Scholar 

  • Omori Y, Yamasaki H (1999) Gap junction proteins connexin32 and connexin43 partially acquire growth-suppressive function in HeLa cells by deletion of their C-terminal tails. Carcinogenesis 20:1913–1918

    CAS  PubMed  Google Scholar 

  • Oviedo-Orta E, Perreau M, Evans WH, Potolicchio I (2010) Control of the proliferation of activated CD4+ T cells by connexins. J Leukoc Biol 88:79–86

    CAS  PubMed  Google Scholar 

  • Ozawa H, Mutai H, Matsunaga T, Tokumaru Y, Fujii M, Sakamoto K, Tomita T, Ogawa K (2009) Promoted cell proliferation by connexin 30 gene transfection to head-and-neck cancer cell line. Anticancer Res 29:1981–1985

    CAS  PubMed  Google Scholar 

  • Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744

    CAS  PubMed  Google Scholar 

  • Penuela S, Gyenis L, Ablack A, Churko JM, Berger AC, Litchfield DW, Lewis JD, Laird DW (2012) Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J Biol Chem 287:29184–29193

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pointis G, Fiorini C, Gilleron J, Carette D, Segretain D (2007) Connexins as precocious markers and molecular targets for chemical and pharmacological agents in carcinogenesis. Curr Med Chem 14:2288–2303

    CAS  PubMed  Google Scholar 

  • Presley CA, Lee AW, Kastl B, Igbinosa I, Yamada Y, Fishman GI, Gutstein DE, Cancelas JA (2005) Bone marrow connexin-43 expression is critical for hematopoietic regeneration after chemotherapy. Cell Commun Adhes 12:307–317

    CAS  PubMed  Google Scholar 

  • Princen F, Robe P, Gros D, Jarry-Guichard T, Gielen J, Merville MP, Bours V (2001) Rat gap junction connexin-30 inhibits proliferation of glioma cell lines. Carcinogenesis 22:507–513

    CAS  PubMed  Google Scholar 

  • Prost G, Bernier-Valentin F, Munari-Silem Y, Selmi-Ruby S, Rousset B (2008) Connexin-32 acts as a downregulator of growth of thyroid gland. Am J Physiol Endocrinol Metab 294:E291–E299

    CAS  PubMed  Google Scholar 

  • Qin H, Shao Q, Curtis H, Galipeau J, Belliveau DJ, Wang T, Alaoui-Jamali MA, Laird DW (2002) Retroviral delivery of connexin genes to human breast tumor cells inhibits in vivo tumor growth by a mechanism that is independent of significant gap junctional intercellular communication. J Biol Chem 277:29132–29138

    CAS  PubMed  Google Scholar 

  • Richard G, Smith LE, Bailey RA, Itin P, Hohl D, Epstein EH Jr, DiGiovanna JJ, Compton JG, Bale SJ (1998) Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 20:366–369

    CAS  PubMed  Google Scholar 

  • Saito T, Nishimura M, Kudo R, Yamasaki H (2001) Suppressed gap junctional intercellular communication in carcinogenesis of endometrium. Int J Cancer 93:317–323

    CAS  PubMed  Google Scholar 

  • Saito T, Sato H, Virgona N, Hagiwara H, Kashiwagi K, Suzuki K, Asano R, Yano T (2007) Negative growth control of osteosarcoma cell by Bowman-Birk protease inhibitor from soybean; involvement of connexin 43. Cancer Lett 253:249–257

    CAS  PubMed  Google Scholar 

  • Sakabe J, Yoshiki R, Sugita K, Haruyama S, Sawada Y, Kabashima R, Bito T, Nakamura M, Tokura Y (2012) Connexin 26 (GJB2) mutations in keratitis-ichthyosis-deafness syndrome presenting with squamous cell carcinoma. J Dermatol 39:814–815

    CAS  PubMed  Google Scholar 

  • Salat-Canela C, Sese M, Peula C, Ramon YCS, Aasen T (2014) Internal translation of the connexin 43 transcript. Cell Commun Signal CCS 12:31

    Google Scholar 

  • Sato H, Hagiwara H, Ohde Y, Senba H, Virgona N, Yano T (2007) Regulation of renal cell carcinoma cell proliferation, invasion and metastasis by connexin 32 gene. J Membr Biol 216:17–21

    CAS  PubMed  Google Scholar 

  • Sawey MJ, Goldschmidt MH, Risek B, Gilula NB, Lo CW (1996) Perturbation in connexin 43 and connexin 26 gap-junction expression in mouse skin hyperplasia and neoplasia. Mol Carcinog 17:49–61

    CAS  PubMed  Google Scholar 

  • Schalper KA, Carvajal-Hausdorf D, Oyarzo MP (2014) Possible role of hemichannels in cancer. Front Physiol 5:237

    PubMed Central  PubMed  Google Scholar 

  • Scott CA, O’Toole EA, Mohungoo MJ, Messenger A, Kelsell DP (2011) Novel and recurrent connexin 30.3 and connexin 31 mutations associated with erythrokeratoderma variabilis. Clin Exp Dermatol 36:88–90

    CAS  PubMed  Google Scholar 

  • Scott CA, Tattersall D, O’Toole EA, Kelsell DP (2012) Connexins in epidermal homeostasis and skin disease. Biochim Biophys Acta 1818:1952–1961

    CAS  PubMed  Google Scholar 

  • Sellitto C, Li L, White TW (2004) Connexin50 is essential for normal postnatal lens cell proliferation. Invest Ophthalmol Vis Sci 45:3196–3202

    PubMed  Google Scholar 

  • Shao Q, Wang H, McLachlan E, Veitch GI, Laird DW (2005) Down-regulation of Cx43 by retroviral delivery of small interfering RNA promotes an aggressive breast cancer cell phenotype. Cancer Res 65:2705–2711

    CAS  PubMed  Google Scholar 

  • Shima K, Muramatsu T, Abiko Y, Yamaoka Y, Sasaki H, Shimono M (2006) Connexin 43 transfection in basaloid squamous cell carcinoma cells. Oncol Rep 16:285–288

    CAS  PubMed  Google Scholar 

  • Shore L, McLean P, Gilmour SK, Hodgins MB, Finbow ME (2001) Polyamines regulate gap junction communication in connexin 43-expressing cells. Biochem J 357:489–495

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sin WC, Crespin S, Mesnil M (2012) Opposing roles of connexin43 in glioma progression. Biochim Biophys Acta 1818:2058–2067

    CAS  PubMed  Google Scholar 

  • Sirnes S, Bruun J, Kolberg M, Kjenseth A, Lind GE, Svindland A, Brech A, Nesbakken A, Lothe RA, Leithe E, Rivedal E (2012) Connexin43 acts as a colorectal cancer tumor suppressor and predicts disease outcome. Int J Cancer 131:570–581

    CAS  PubMed  Google Scholar 

  • Smyth JW, Shaw RM (2013) Autoregulation of connexin43 gap junction formation by internally translated isoforms. Cell Rep 5:611–618

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song D, Liu X, Liu R, Yang L, Zuo J, Liu W (2010) Connexin 43 hemichannel regulates H9c2 cell proliferation by modulating intracellular ATP and [Ca2+]. Acta Biochim Biophys Sin 42:472–482

    CAS  PubMed  Google Scholar 

  • Sridharan S, Simon L, Meling DD, Cyr DG, Gutstein DE, Fishman GI, Guillou F, Cooke PS (2007) Proliferation of adult sertoli cells following conditional knockout of the Gap junctional protein GJA1 (connexin 43) in mice. Biol Reprod 76:804–812

    CAS  PubMed  Google Scholar 

  • Statuto M, Audebet C, Tonoli H, Selmi-Ruby S, Rousset B, Munari-Silem Y (1997) Restoration of cell-to-cell communication in thyroid cell lines by transfection with and stable expression of the connexin-32 gene. Impact on cell proliferation and tissue-specific gene expression. J Biol Chem 272:24710–24716

    CAS  PubMed  Google Scholar 

  • Suh HN, Kim MO, Han HJ (2012) Laminin-111 stimulates proliferation of mouse embryonic stem cells through a reduction of gap junctional intercellular communication via RhoA-mediated Cx43 phosphorylation and dissociation of Cx43/ZO-1/drebrin complex. Stem Cells Dev 21:2058–2070

    PubMed Central  CAS  PubMed  Google Scholar 

  • Talhouk RS, Fares MB, Rahme GJ, Hariri HH, Rayess T, Dbouk HA, Bazzoun D, Al-Labban D, El-Sabban ME (2013) Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of beta-catenin/connexin43 association. Exp Cell Res 319:3065–3080

    CAS  PubMed  Google Scholar 

  • Tanaka M, Grossman HB (2001) Connexin 26 gene therapy of human bladder cancer: induction of growth suppression, apoptosis, and synergy with Cisplatin. Hum Gene Ther 12:2225–2236

    CAS  PubMed  Google Scholar 

  • Tanaka M, Grossman HB (2004) Connexin 26 induces growth suppression, apoptosis and increased efficacy of doxorubicin in prostate cancer cells. Oncol Rep 11:537–541

    CAS  PubMed  Google Scholar 

  • Trosko JE (2007) Gap junctional intercellular communication as a biological “Rosetta stone” in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy. J Membr Biol 218:93–100

    CAS  PubMed  Google Scholar 

  • Trosko JE, Chang CC (2001) Mechanism of up-regulated gap junctional intercellular communication during chemoprevention and chemotherapy of cancer. Mutat Res 480–481:219–229

    PubMed  Google Scholar 

  • Trosko JE, Ruch RJ (2002) Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr Drug Targets 3:465–482

    CAS  PubMed  Google Scholar 

  • Umhauer S, Ruch RJ, Fanning J (2000) Gap junctional intercellular communication and connexin 43 expression in ovarian carcinoma. Am J Obstet Gynecol 182:999–1000

    CAS  PubMed  Google Scholar 

  • Unsworth HC, Aasen T, McElwaine S, Kelsell DP (2007) Tissue-specific effects of wild-type and mutant connexin 31: a role in neurite outgrowth. Hum Mol Genet 16:165–172

    CAS  PubMed  Google Scholar 

  • van Steensel MA, Spruijt L, van der Burgt I, Bladergroen RS, Vermeer M, Steijlen PM, van Geel M (2005) A 2-bp deletion in the GJA1 gene is associated with oculo-dento-digital dysplasia with palmoplantar keratoderma. Am J Med Genet A 132A:171–174

    PubMed  Google Scholar 

  • Vreeburg M, de Zwart-Storm EA, Schouten MI, Nellen RG, Marcus-Soekarman D, Devies M, van Geel M, van Steensel MA (2007) Skin changes in oculo-dento-digital dysplasia are correlated with C-terminal truncations of connexin 43. Am J Med Genet A 143:360–363

    CAS  PubMed  Google Scholar 

  • Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661

    CAS  PubMed  Google Scholar 

  • Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA (2012) Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 7:11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wilgenbus KK, Kirkpatrick CJ, Knuechel R, Willecke K, Traub O (1992) Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer 51:522–529

    CAS  PubMed  Google Scholar 

  • Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, Djoumbou Y, Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P, Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R, Scalbert A (2013) HMDB 3.0–the human metabolome database in 2013. Nucleic Acids Res 41:D801–D807

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wong RC, Pebay A, Nguyen LT, Koh KL, Pera MF (2004) Presence of functional gap junctions in human embryonic stem cells. Stem Cells 22:883–889

    CAS  PubMed  Google Scholar 

  • Wong RC, Pera MF, Pebay A (2008) Role of gap junctions in embryonic and somatic stem cells. Stem Cell Rev 4:283–292

    CAS  PubMed  Google Scholar 

  • Yamakage K, Omori Y, Piccoli C, Yamasaki H (1998) Growth control of 3T3 fibroblast cell lines established from connexin 43-deficient mice. Mol Carcinog 23:121–128

    CAS  PubMed  Google Scholar 

  • Yamasaki H (1995) Non-genotoxic mechanisms of carcinogenesis: studies of cell transformation and gap junctional intercellular communication. Toxicol Lett 77:55–61

    CAS  PubMed  Google Scholar 

  • Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli ML, Omori Y (1999a) Role of connexin (gap junction) genes in cell growth control and carcinogenesis. C R Acad Sci III 322:151–159

    CAS  PubMed  Google Scholar 

  • Yamasaki H, Omori Y, Zaidan-Dagli ML, Mironov N, Mesnil M, Krutovskikh V (1999b) Genetic and epigenetic changes of intercellular communication genes during multistage carcinogenesis. Cancer Detect Prev 23:273–279

    CAS  PubMed  Google Scholar 

  • Yano T, Hernandez-Blazquez FJ, Omori Y, Yamasaki H (2001) Reduction of malignant phenotype of HEPG2 cell is associated with the expression of connexin 26 but not connexin 32. Carcinogenesis 22:1593–1600

    CAS  PubMed  Google Scholar 

  • Zhang YW, Morita I, Ikeda M, Ma KW, Murota S (2001) Connexin43 suppresses proliferation of osteosarcoma U2OS cells through post-transcriptional regulation of p27. Oncogene 20:4138–4149

    CAS  PubMed  Google Scholar 

  • Zhang YW, Kaneda M, Morita I (2003a) The gap junction-independent tumor-suppressing effect of connexin 43. J Biol Chem 278:44852–44856

    CAS  PubMed  Google Scholar 

  • Zhang YW, Nakayama K, Nakayama K, Morita I (2003b) A novel route for connexin 43 to inhibit cell proliferation: negative regulation of S-phase kinase-associated protein (Skp 2). Cancer Res 63:1623–1630

    CAS  PubMed  Google Scholar 

  • Zhang D, Kaneda M, Nakahama K, Arii S, Morita I (2007) Connexin 43 expression promotes malignancy of HuH7 hepatocellular carcinoma cells via the inhibition of cell-cell communication. Cancer Lett 252:208–215

    CAS  PubMed  Google Scholar 

  • Zhang W, Li HG, Fan MJ, Lv ZQ, Shen XM, He XX (2009) Expressions of connexin 32 and 26 and their correlation to prognosis of non-small cell lung cancer. Ai Zheng 28:173–176

    PubMed  Google Scholar 

  • Zhang D, Chen C, Li Y, Fu X, Xie Y, Li Y, Huang Y (2012) Cx31.1 acts as a tumour suppressor in non-small cell lung cancer (NSCLC) cell lines through inhibition of cell proliferation and metastasis. J Cell Mol Med 16:1047–1059

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao W, Han HB, Zhang ZQ (2011) Suppression of lung cancer cell invasion and metastasis by connexin43 involves the secretion of follistatin-like 1 mediated via histone acetylation. Int J Biochem Cell Biol 43:1459–1468

    CAS  PubMed  Google Scholar 

  • Zhu D, Caveney S, Kidder GM, Naus CC (1991) Transfection of C6 glioma cells with connexin 43 cDNA: analysis of expression, intercellular coupling, and cell proliferation. Proc Natl Acad Sci U S A 88:1883–1887

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Scott Robert Johnstone, Dr. Kevin Clayton, and Cláudia Salat Canela for commenting on and contributing to this article. I thank Teresa Moliné Marimon for assistance with Fig. 2. This work has been supported by funding to Trond Aasen from Instituto de Salud Carlos III grant PI13/00763 and grant CP10/00624, co-financed by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trond Aasen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aasen, T. Connexins: junctional and non-junctional modulators of proliferation. Cell Tissue Res 360, 685–699 (2015). https://doi.org/10.1007/s00441-014-2078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2078-3

Keywords

Navigation