Skip to main content
Log in

Mechanism of Lysophosphatidylcholine-Induced Lysosome Destabilization

  • Published:
Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Lysosomal destabilization is critical for the organelle and living cells. Phospholipase A2 (PLA2) was shown to be able to destabilize lysosomes under some conditions. By what mechanism the enzyme affects lysosomal stability is not fully studied. In this study, we investigated the effects of lysophosphatidylcholine (lysoPC), a PLA2-produced lipid metabolite, on lysosomal ion permeability, osmotic sensitivity and stability. By measuring lysosomal β-hexosaminidase free activity, membrane potential, proton leakage and their enzyme latency loss in hypotonic sucrose medium, we established that lysoPC could increase the lysosomal permeability to both potassium ions and protons and enhance lysosomal osmotic sensitivity. These changes in lysosomal membrane properties promoted entry of potassium ions into lysosomes via K+/H+ exchange. The resultant osmotic imbalance across the membranes led to losses of lysosomal integrity. The enhancement of lysosomal osmotic sensitivity caused the lysosomes to become more liable to destabilization in osmotic shock. These results suggest that lysoPC may play a key role in PLA2-induced lysosomal destabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akita H, Creer MH, Yamada KA, Sobel BE, Corr PB (1986) Electrophysiologic effects of intracellular lysophosphoglycerides and their accumulation in cardiac lymph with myocardial ischemia in dogs. J Clin Invest 78:271–280

    PubMed  CAS  Google Scholar 

  • Bird SJ, Forster S, Lloyd JB (1987) Translocation of sugars into rat liver lysosomes. Evidence against a common carrier for D-glucose and D-ribose. Biochem J 245:929–931

    PubMed  CAS  Google Scholar 

  • Brunk UT, Dalen H, Roberg K, Hellquist HB (1997) Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med 23:616–626

    Article  PubMed  CAS  Google Scholar 

  • Burlando B, Marchi B, Panfoli I, Viarengo AB (2002) Essential role of Ca2+-dependent phospholipase A2 in estradiol-induced lysosome activation. Am J Physiol 283:C1461–C1468

    CAS  Google Scholar 

  • Casey RP, Hollemans M, Tager JM (1978) The permeability of the lysosomal membrane to small ions. Biochim Biophys Acta 508:15–26

    Article  PubMed  CAS  Google Scholar 

  • Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–3587

    Article  PubMed  CAS  Google Scholar 

  • Colles SM, Chisolm GM (2000) Lysophosphatidylcholine-induced cellular injury in cultured fibroblasts involves oxidative events. J Lipid Res 41:1188–1198

    PubMed  CAS  Google Scholar 

  • Croset M, Brossard N, Polette A, Lagarde M (2000) Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem. J 345:61–67

    Article  PubMed  CAS  Google Scholar 

  • De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu. Rev Physiol 28:435–492

    Article  PubMed  Google Scholar 

  • Decker RS, Poole AR, Wildenthal K (1980) Distribution of lysosomal cathepsin D in normal, ischemic, and starved rabbit cardiac myocytes. Circ Res 46:485–494

    PubMed  CAS  Google Scholar 

  • Erdal H, Berndtsson M, Castro J, Brunk UT, Shoshan MC, Linder S (2005) Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc Natl Acad Sci USA 102:192–197

    Article  PubMed  CAS  Google Scholar 

  • Fell HB, Dingle JT (1963) Studies on the mode of action of excess of vitamin A 6. Lysosomal protease and the degradation of cartilage matrix. Biochem. J 87:403–408

    PubMed  CAS  Google Scholar 

  • Forster S, Lloyd JB (1988) Solute translocation across the mammalian lysosome membrane. Biochim Biophys Acta 947:465–491

    PubMed  CAS  Google Scholar 

  • Golzio M, Teissie J, Rols MP (2000) Control by membrane order of voltage-induced permeabilization, loading and gene transfer in mammalian cells. Bioelectrochemistry 53:25–34

    Article  Google Scholar 

  • Greene AA, Schneider JS (1992) Approaches to the study of lysosomal transport. In: JG Thoene, editor. Pathophoysiology of Lysosomal Transport. CRC Press, Boca Raton, pp. 7–44

    Google Scholar 

  • Guskey LE, Smith PC, Wolff DA (1970) Patterns of cytopathology and lysosomal enzyme release in poliovirus-infected HEp-2 cells treated with either 2-(alpha-hydroxybenzyl)-benzimidazole or guanidine HCl. J Gen Virol 6:151–161

    Article  PubMed  CAS  Google Scholar 

  • Harikumar P, Reeves JP (1983) The lysosomal proton pump is electrogenic. J Biol Chem 258:10403–10410

    PubMed  CAS  Google Scholar 

  • Hatherill JR, Stephens KE, Nagao K, Ishizaka A, Wilmarth L, Wang JC, Deinhart T, Larrick JW, Raffin TA (1989) Effects of anti-C5a antibodies on human polymorphonuclear leukocyte function: Chemotaxis, chemiluminescence, and lysosomal enzyme release. J Biol Response Mod 8:614–624

    PubMed  CAS  Google Scholar 

  • Jonas AJ, Smith ML, Allison WS, Laikind PK, Greene AA, Schneider JA (1983) Proton-translocating ATPase and lysosomal cystine transport. J Biol Chem 258:11727–11730

    PubMed  CAS  Google Scholar 

  • Kiyosue T, Aomine M, Arita M (1984) Lysophosphatidylcholine decreases single channel conductance of inward rectifier K+ channel in mammalian ventricular myocytes. Jpn J Physiol 34:369–373

    PubMed  CAS  Google Scholar 

  • Kogure K, Nakashima S, Tsuchie A, Tokumura A, Fukuzawa K (2003) Temporary membrane distortion of vascular smooth muscle cells is responsible for their apoptosis induced by platelet-activating factor-like oxidized phospholipids and their degradation product, lysophosphatidylcholine. Chem Phys Lipids 126:29–38

    Article  PubMed  CAS  Google Scholar 

  • Laszlo L, Lowe J, Self T, Kenward N, Landon M, McBride T, Farquhar C, McConnell I, Brown J, Hope J, Mayer RJ (1992) Lysosomes as key organelles in the pathogenesis of prion encephalopathies. J Pathol 166:333–341

    Article  PubMed  CAS  Google Scholar 

  • Leno GH, Munshi R (1994) Initiation of DNA replication in nuclei from quiescent cells requires permeabilization of the nuclear membrane. J Cell Biol 127:5–14

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JB, Forster S (1986) The lysosome membrane. Trends Biol Sci 11:365–368

    Article  CAS  Google Scholar 

  • Loh YP, Tam WWH, Russell JT (1984) Measurement of delta pH and membrane potential in secretory vesicles isolated from bovine pituitary intermediate lobe. J Biol Chem 259:8238–8245

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lozier RH, Niederberger W, Bogomolni RA, Hwang S, Stoeckenius W (1976) Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane. Biochim Biophys Acta 440:545–556

    Article  PubMed  CAS  Google Scholar 

  • Lundbaek JA, Andersen OS (1994) Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J Gen Physiol 104:645–673

    Article  PubMed  CAS  Google Scholar 

  • Marchi B, Burlando B, Moore MN, Viarengo A (2004) Mercury- and copper-induced lysosomal membrane destabilisation depends on [Ca2+] i dependent phospholipase A2 activation. Aquat Toxicol 66:197–204

    Article  PubMed  CAS  Google Scholar 

  • Marone G, Fimiani B, Torella G, Poto S, Bianco P, Condorelli M (1983) Possible role of arachidonic acid and of phospholipase A2 in the control of lysosomal enzyme release from human polymorphonuclear leukocytes. J Clin Lab Immunol 12:111–116

    PubMed  CAS  Google Scholar 

  • Nixon RA, Cataldo AM, Paskevich PA, Hamilton DJ, Wheelock TR, Kanaley-Andrews L (1992) The lysosomal system in neurons. Involvement at multiple stages of Alzheimer’s disease pathogenesis. Ann N Y Acad Sci 674:65–88

    Article  CAS  Google Scholar 

  • Orme FW, Moronne MM, Macey RI (1988) Modification of the erythrocyte membrane dielectric constant by alcohols. J Membr Biol 104:57–68

    Article  PubMed  CAS  Google Scholar 

  • Paula S, Volkov AG, Van Hoek AN, Haines TH, Deamer DW (1996) Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Biophys J 70:339–348

    Article  PubMed  CAS  Google Scholar 

  • Pogwizd SM, Onufer JR, Kramer JB, Sobel BE, Corr PB (1986) Induction of delayed afterdepolarizations and triggered activity in canine purkinje fibers by lysophosphoglycerides. Circ Res. 59:416–426

    PubMed  CAS  Google Scholar 

  • Reign DJ, Tager JM (1977) The permeability properties of the lysosomal membrane. Biochim Biophys Acta 472:419–449

    Google Scholar 

  • Ruth RC, Weglicki WB (1982) Effects of ATP on lysosomes: inhibition of the loss of latency caused by cooling. Am J Physiol 242:C192–C199

    CAS  Google Scholar 

  • Schilling T, Lehmann F, Ruckert B, Eder C (2004) Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J Physiol 557:105–120

    Article  PubMed  CAS  Google Scholar 

  • Sedlis SP, Sequeira JM, Altszuler HM (1990) Coronary sinus lysophosphatidylcholine accumulation during rapid atrial pacing. Am J Cardiol 66:695–698

    Article  Google Scholar 

  • Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM (2004) A novel mechanism for the store-operated calcium influx pathway Nat Cell Biol 6:113–121

    Article  PubMed  CAS  Google Scholar 

  • Trauble H (1971) The movement of molecules across lipid membranes: A molecular theory. J Membr Biol 4:193–208

    Article  Google Scholar 

  • Wan F-Y, Wang Y-N, Zhang G-J (2001) The influence of oxidation of membrane thiol groups on lysosomal proton permeability. Biochem J 360:355–362

    Article  PubMed  CAS  Google Scholar 

  • Wan F-Y, Yang L, Zhong Y-G, Zhu W, Wang Y-N, Zhang G-J (2002) Enhancement of lysosomal osmotic sensitivity induced by the photooxidation of membrane thiol groups. Photochem Photobiol 75:134–139

    Article  PubMed  CAS  Google Scholar 

  • Wilson-Ashworth HA, Judd AM, Law RM, Freestone BD, Taylor S, Mizukawa MK, Cromar KR, Sudweeks S, Bell JD (2004) Formation of transient non-protein calcium pores by lysophospholipids in S49 lymphoma cells. J Membr Biol 200:25–33

    Article  PubMed  CAS  Google Scholar 

  • Xu Y (2002) Sphingosylphospphorycholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochim Biophys Acta 1582:81–88

    PubMed  Google Scholar 

  • Yamada H, Hayashi H, Natori Y (1984) A simple procedure for the isolation of highly purified lysosomes from normal rat liver. J Biochem 95:1155–1160

    PubMed  CAS  Google Scholar 

  • Yang L, Zhang G-J, Zhong Y-G, Zheng Y-Z (2000) Influence of membrane fluidity modifiers on lysosomal osmotic sensitivity. Cell Biol Int 24:699–704

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Zhang G-J (1997) Lysosomal destabilization via increased potassium ion permeability following photodamage. Biochim Biophys Acta 1323:334–342

    Article  PubMed  CAS  Google Scholar 

  • Yen CL, Mar MH, Meeker RB, Fernandes A, Zeisel SH (2001) Choline deficiency induces apoptosis in primary cultures of fetal neurons. FASEB J 15:1704–1710

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Brunk UT, Eaton JW (2001) Delayed oxidant-induced cell death involves activation of phospholipase A2. FEBS Lett 509:399–404

    Article  PubMed  CAS  Google Scholar 

  • Zhang G-J, Liu H-W, Yang L, Zhong Y-G, Zheng Y-Z (2000) Influence of membrane physical state on the lysosomal proton permeability. J Membr Biol 175:53–62

    Article  CAS  Google Scholar 

  • Zhang G-J, Yao J (1997) The direct cause of photodamage-induced lysosomal destabilization. Biochim Biophys Acta 1326:75–82

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y-G, Zhang G-J, Yang L, Zheng Y-Z (2000) Effects of photoinduced membrane rigidification on the lysosomal permeability to potassium ions. Photochem Photobiol 71:627–633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

supported by project 30470446 from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Jiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, JS., Li, YB., Wang, JW. et al. Mechanism of Lysophosphatidylcholine-Induced Lysosome Destabilization. J Membrane Biol 215, 27–35 (2007). https://doi.org/10.1007/s00232-007-9002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-9002-7

Keywords

Navigation