Skip to main content
Log in

Elucidation of the Mechanisms Underlying Hypo-osmotically Induced Turgor Pressure Regulation in the Marine Alga Valonia utricularis

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Exposure of the giant marine alga Valonia utricularis to acute hypo-osmotic shocks induces a transient increase in turgor pressure and subsequent back-regulation. Separate recording of the electrical properties of tonoplast and plasmalemma together with turgor pressure was performed by using a vacuolar perfusion assembly. Hypo-osmotic turgor pressure regulation was inhibited by external addition of 300 μM of the membrane-permeable ion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). In the presence of 100 μM NPPB, regulation could only be inhibited by simultaneous external addition of 200 μM 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), a membrane-impermeable inhibitor of Cl transport. At concentrations of about 100 μM, NPPB seems to selectively inhibit Cl transporters in the tonoplast and K+ transporters in the plasmalemma, whereas 300 μM NPPB inhibits K+ and Cl transporters in both membranes. Evidence was achieved by measuring the tonoplast and plasmalemma conductances (G t and G p) in low-Cl and K+-free artificial seawater. Inhibition of turgor pressure regulation by 300 μM NPPB was accompanied by about 85% reduction of G t and G p. Vacuolar addition of sulfate, an inhibitor of tonoplast Cl transporters, together with external addition of DIDS and Ba2+ (an inhibitor of K+ transporters) also strongly reduced G p and G t but did not affect hypo-osmotic turgor pressure regulation. These and many other findings suggest that KCl efflux partly occurs via electrically silent transport systems. Candidates are vacuolar entities that are disconnected from the huge and many-folded central vacuole or that become disconnected upon disproportionate swelling of originally interconnected vacuolar entities upon acute hypo-osmotic challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. Unfortunately, for preparation of AVS media with a low Cl concentration, 60 mM sulfuric acid were required to adjust the pH to the usual value of 6.3. Hence, no experimental strategy was available to separate a possible effect of lowering the vacuolar Cl concentration on G t from an effect induced by vacuolar sulfate.

  2. This was justified by the finding that replacement of the vacuolar sap by AVS did not result in any changes of turgor pressure and the electrical parameters of the two membranes

  3. It should be noted that under these conditions the reduction of G p was more pronounced when charge pulses of negative polarity were applied. In K+-free ASW, G p values obtained by injection of a negative charge pulse were about half those derived from experiments in which positive pulses were applied (n = 2 cells). The discrepancy between the values is probably due to the fact that the K+ gradient imposed on the plasmalemma under these conditions is much steeper than in ASW (12 mM K+). Reduction of G t upon replacement of ASW by K+-free ASW was also slightly stronger with negative pulses (about 42%) than with positive pulses (about 30%), probably because cytosolic K+ was also affected by this treatment.

  4. Note that when the pressure was increased while cells were still bathed in ASW, subsequent K+ removal did not affect G t (n = 6) or caused only a slight decrease of G t (by 7 S · m−2 or less, n = 2)

References

  • Beilby M.J., Bisson M.A. 1999. Transport systems of Ventricaria ventricosa: I/V analysis of both membranes in series as a function of [K+] o . J. Membr. Biol. 171:63–73

    Article  PubMed  CAS  Google Scholar 

  • Beilby M.J., Cherry C.A., Shepherd V.A. 1999. Dual turgor regulation response to hypotonic stress in Lamprothamnium papulosum. Plant Cell Environ. 22:347–359

    Article  CAS  Google Scholar 

  • Bentrup F.W. 1980. Electrogenic membrane transport in plants. A review. Biophys. Struct. Mech. 6:175–189

    Article  CAS  Google Scholar 

  • Benz R., Zimmermann U. 1983. Evidence for the presence of mobile charges in the cell membrane of Valonia utricularis. Biophys. J. 43:13–26

    PubMed  CAS  Google Scholar 

  • Binder K.-A., Wegner L.H., Heidecker M., Zimmermann U. 2003. Gating of Cl currents in protoplasts from the marine alga Valonia utricularis depends on the transmembrane Cl gradient and is affected by enzymatic cell wall degradation. J. Membr. Biol. 191:165–178

    Article  PubMed  CAS  Google Scholar 

  • Bisson M.A., Beilby M.J. 2002. The transport systems of Ventricaria ventricosa: Hypotonic and hypertonic turgor regulation. J. Membr. Biol. 190:43–56

    Article  PubMed  CAS  Google Scholar 

  • Bisson M.A., Kirst G.O. 1980. Lamprothamnium, a euryhaline charophyte. II Time course of turgor regulation. J. Exp. Bot. 31:1237–1244

    Article  Google Scholar 

  • Brooks S.P.J., Storey K.B. 1992. Bound and determined: A computer program for making buffers of defined ion concentrations. Anal. Biochem. 201:119–126

    Article  PubMed  CAS  Google Scholar 

  • Cleland R. 1971. Cell wall extension. Annu. Rev. Plant Physiol. 22:197–222

    Article  CAS  Google Scholar 

  • Cleland R. 1977. The control of cell enlargement. In: Integration of Activity in the Higher Plant. D. Jennings, editor. Cambridge University Press, Cambridge, pp. 101–115

  • Evans L.V., Callow M.E. 1974. Polysaccharide sulphation in Laminaria. Planta 117:93–95

    Article  CAS  Google Scholar 

  • Evans L.V., Callow M.E., Percival E., Fareed V. 1974. Studies on the synthesis and composition of extracellular mucilage in the unicellular red alga Rhodella. J. Cell. Sci. 16:1–21

    PubMed  CAS  Google Scholar 

  • Evans L.V., Holligan M.S. 1972. Correlated light and electron microscopic studies on brown algae I. Localisation of alginic acid and sulphated polysaccharides in Dictyota. New Phytol. 71:1161–1172

    Article  CAS  Google Scholar 

  • Evans L.V., Simpson M., Callow M.E. 1973. Sulphated polysaccharide synthesis in brown algae. Planta 110:237–252

    Article  CAS  Google Scholar 

  • Findlay G.P. 2001. Membranes and the electrophysiology of turgor regulation. Aust. J. Plant Physiol. 28:617–634

    CAS  Google Scholar 

  • Frachisse J.M., Thomine S., Colcombet J., Guern J., Barbier-Brygoo H. 1999. Sulphate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells. Plant Physiol. 121:253–261

    Article  PubMed  CAS  Google Scholar 

  • Garrill A., Tyerman S.D., Findlay G.P., Ryan P.R. 1996. Effects of NPPB and niflumic acid on outward K+ and Cl currents across the plasma membrane of wheat root protoplasts. Aust. J. Plant Physiol. 23:527–534

    Article  CAS  Google Scholar 

  • Giles K.R., Humphries M., Abell A., Garrill A. 2003. The synthesis of NPPB and NPBB by reductive amination and the effects of these compounds on K+ channels of the alga Nitella hookeri. Bioorg. Med. Chem. Lett. 13:293–295

    Article  PubMed  CAS  Google Scholar 

  • Green P.B., Erickson R.O., Buggy J. 1971. Metabolic and physical control of cell elongation rate. Plant Physiol. 47:423–430

    PubMed  CAS  Google Scholar 

  • Greger R. 1990. Chloride channel blockers. Methods Enzymol. 191:793–810

    PubMed  CAS  Google Scholar 

  • Gutknecht J. 1968. Salt transport in Valonia: Inhibition of potassium uptake by small hydrostatic pressures. Science 160:68–70

    Article  PubMed  CAS  Google Scholar 

  • Hastings D.F., Gutknecht J. 1976. Ionic relations and the regulation of turgor pressure in the marine alga, Valonia macrophysa. J. Membr. Biol. 28:263–275

    Article  CAS  Google Scholar 

  • Hedrich R., Spidola N., Savchenko G., Felle H.H., Kaiser W.M., Heber U. 2001. Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate, abscisic acid or interruption of water supply. Planta 213:594–601

    Article  PubMed  CAS  Google Scholar 

  • Heidecker M., Mimietz S., Wegner L.H., Zimmermann U. 2003a. Structural peculiarities dominate the turgor pressure response of the marine alga Valonia utricularis upon osmotic challenges. J. Membr. Biol. 192:123–139

    Article  CAS  Google Scholar 

  • Heidecker M., Wegner L.H., Binder K-A., Zimmermann U. 2003b. Turgor pressure changes trigger characteristic changes in the electrical conductance of the tonoplast and the plasmalemma of the marine alga Valonia utricularis. Plant Cell Environ. 26:1035–1051

    Article  Google Scholar 

  • Kesseler H. 1964. Die Bedeutung einiger anorganischer Komponenten des Seewassers für die Turgorregulation von Chaetomorpha linum. Helgol. Wiss. Meeresunters. 10:73–90

    Article  CAS  Google Scholar 

  • Kesseler H. 1965. Turgor, osmotisches Potential und ionale Zusammensetzung des Zellsaftes einiger Meeresalgen verschiedener Verbreitungsgebiete. Bot. Gothob. 3:103–111

    Google Scholar 

  • Kirst G.O. 1990. Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:21–53

    Article  CAS  Google Scholar 

  • Millard P., Evans L.V. 1982. Sulphate uptake in the unicellular marine red alga Rhodella maculata. Arch. Microbiol. 131:165–169

    Article  CAS  Google Scholar 

  • Mimietz S., Heidecker M., Krohne G., Wegner L.H., Zimmermann U. 2003. Impact of hypoosmotic challenges on spongy architecture of the cytoplasm of the giant marine alga Valonia utricularis. Protoplasma 222:117–128

    Article  PubMed  CAS  Google Scholar 

  • Mummert H., Gradmann D. 1991. Ion fluxes in Acetabularia: Vesicular shuttle. J. Membr. Biol. 124:255–263

    Article  PubMed  CAS  Google Scholar 

  • Philip J.R. 1958. Propagation of turgor and other properties through cell aggregations. Plant Physiol. 33:271–274

    PubMed  CAS  Google Scholar 

  • Ryser C., Wang J., Mimietz S., Zimmermann U. 1999. Determination of the individual electrical and transport properties of the plasmalemma and the tonoplast of the giant marine alga Ventricaria ventricosa by means of the integrated perfusion/charge-pulse technique: Evidence for a multifolded tonoplast. J. Membr. Biol. 168:183–197

    Article  PubMed  CAS  Google Scholar 

  • Schroeder J.I., Schmidt C., Sheaffer J. 1993. Identification of high-affinity slow anion channel blockers and evidence for stomatal regulation by slow anion channels in guard cells. Plant Cell 5:1831–1841

    Article  PubMed  CAS  Google Scholar 

  • Shabala S.N., Lew R.R. 2002. Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol. 129:290–299

    Article  PubMed  CAS  Google Scholar 

  • Shepherd V.A., Beilby M.J., Bisson M.A. 2004. When is a cell not a cell? A theory relating coenocytic structure to the unusual electrophysiology of Ventricaria ventricosa (Valonia ventricosa). Protoplasma 223:79–91

    Article  PubMed  CAS  Google Scholar 

  • Shepherd V.A., Beilby M.J., Heslop D.J. 1999. Ecophysiology of the hypotonic response in the salt-tolerant charophyte alga Lamprothamnium papulosum. Plant Cell Environ. 22:333–346

    Article  Google Scholar 

  • Shihira-Ishikawa I., Nawata T. 1992. The structure and physiological properties of the cytoplasm in intact Valonia cell. Jpn. J. Phycol. (Sorui) 40:151–159

    CAS  Google Scholar 

  • Spiess, I. 1996. Untersuchungen an perfundierten turgeszenten Algenzellen von Valonia utricularis: Elektrophysiologische Messungen zur Charakterisierung der elektrischen Eigenschaften von Plasmalemma und Tonoplasten. PhD Dissertation, University of Würzburg

  • Spiess I., Wang J., Benz R., Zimmermann U. 1993. Characterization of the chloride carrier in the plasmalemma of the alga Valonia utricularis: The inhibition by 4,4’-diisothiocyanatostilbene- 2,2’-disulfonic acid. Biochim. Biophys. Acta 1149:93–101

    Article  PubMed  CAS  Google Scholar 

  • Stento N.A., Gerber Ryba N., Kiegle E.A., Bisson M.A. 2000. Turgor regulation in the salt-tolerant alga Chara longifolia. Plant Cell Environ. 23:629–637

    Article  CAS  Google Scholar 

  • Steudle E., Zimmermann U. 1971. Cell turgor and selective ion transport of Chaetomorpha linum. Z. Naturforsch. 26:1276–1282

    CAS  Google Scholar 

  • Taylor A.R., Brownlee C. 2003. A novel Cl- inward-rectifying current in the plasma membrane of the calcifying marine phytoplankton Coccolithus pelagicus. Plant Physiol. 131:1391–1400

    Article  PubMed  CAS  Google Scholar 

  • Thomine S., Guern J., Barbier-Brygoo H. 1997. Voltage-dependent anion channel of Arabidopsis hypocotyls: Nucleotide regulation and pharmacological properties. J. Membr. Biol. 159:71–82

    Article  PubMed  CAS  Google Scholar 

  • Wang J., Spiess I., Ryser C., Zimmermann U. 1997a. Separate determination of the electrical properties of the tonoplast and the plasmalemma of the giant-celled alga Valonia utricularis: Vacuolar perfusion of turgescent cells with nystatin and other agents. J. Membr. Biol. 157:311–321

    Article  CAS  Google Scholar 

  • Wang J., Sukhorukov V.L., Djuzenova C.S., Zimmermann U., Müller T., Fuhr G. 1997b. Electrorotational spectra of protoplasts generated from the giant marine alga Valonia utricularis. Protoplasma 196:123–134

    Article  Google Scholar 

  • Wang J., Wehner G., Benz R., Zimmermann U. 1991. Influence of external chloride concentration on the kinetics of mobile charges in the cell membrane of Valonia utricularis. Evidence for the existence of a chloride carrier. Biophys. J. 59:235–248

    CAS  PubMed  Google Scholar 

  • Wangemann P., Wittner M., Di Stefano A., Englert H.C., Lang H.J., Schlatter E., Greger R. 1986. Chloride channel blockers in the thick ascending limb of the loop of Henle structure activity relationship. Pfluegers Arch. 407:S128–S141

    Article  CAS  Google Scholar 

  • Weiss J.N. 1997. The Hill equation revisited: Uses and misuses. FASEB J. 11:835–841

    PubMed  CAS  Google Scholar 

  • Yanochko G.M., Yool A.J. 2004. Block by extracellular divalent cations of Drosophila big brain channels expressed in Xenopus oocytes. Biophys. J. 86:1470–1478

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann U. 1978. Physics of turgor- and osmoregulation. Annu. Rev. Plant Physiol. 29:121–148

    Article  CAS  Google Scholar 

  • Zimmermann U., Büchner K.H., Benz R. 1982. Transport properties of mobile charges in algal membranes: Influence of pH and turgor pressure. J. Membr. Biol. 67:183–197

    Article  CAS  Google Scholar 

  • Zimmermann U., Schneider H., Wegner L.H., Haase A. 2004. Water ascent in tall trees: Does evolution of land plants rely on a highly metastable state?. New Phytol. 162:575–615

    Article  Google Scholar 

  • Zimmermann U., Steudle E. 1974. The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis. J. Membr. Biol. 16:331–352

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann U., Steudle E. 1978. Physical aspects of water relations of plant cells. Adv. Bot. Res. 6:45–117

    Article  Google Scholar 

  • Zimmermann U., Wagner H., Heidecker M., Mimietz S., Schneider H., Szimtenings M., Haase A., Mitlöhner R., Kruck W., Hoffmann R., König W. 2002. Implications of mucilage on pressure bomb measurements and water lifting in trees rooting in high-salinity water. Trees 16:100–111

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Zi 99/13-3) to U. Z. We thank Mrs. Katja Schwuchow for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Zimmermann.

Additional information

Karl-Andree Binder and Frank Heisler contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, KA., Heisler, F., Westhoff, M. et al. Elucidation of the Mechanisms Underlying Hypo-osmotically Induced Turgor Pressure Regulation in the Marine Alga Valonia utricularis . J Membrane Biol 213, 47–63 (2006). https://doi.org/10.1007/s00232-006-0047-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0047-9

Keywords

Navigation