Skip to main content

Advertisement

Log in

AQPs and Control of Vesicle Volume in Secretory Cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs) are a family of small, hydrophobic, integral membrane proteins. In mammals, they are expressed in many epithelia and endothelia and function as channels that permit water or small solutes to pass. Although the AQPs reside constitutively at the plasma membrane in most cell types, the presence of AQPs in intracellular organelles such as secretory granules and vesicles has currently been demonstrated. The secretory granules and vesicles contain secretory proteins, migrate to particular locations within the cell close to the plasma membrane and release their contents to the outside. During the process, including exocytosis, regulation of secretory granule or vesicle volume is important. This paper reviews the possible role of AQPs in secretory granules and vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abu-Hamdah R, Cho W.J., Cho S.J., Jeremic A., Kelly M., Ilie A.E., Jena B.P. 2004. Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol. Int. 28:7–17

    Article  PubMed  CAS  Google Scholar 

  • Agre P., Lee M.D., Devidas S., Guggino W.B. 1997. Aquaporins and ion conductance. Science 275:1490; author reply 1492

    Article  PubMed  CAS  Google Scholar 

  • Almers W. 1990. Exocytosis. Annu. Rev. Physiol. 52:607–624

    Article  PubMed  CAS  Google Scholar 

  • Anthony T.L., Brooks H.L., Boassa D., Leonov S., Yanochko G.M., Regan J.W., Yool A.J. 2000. Cloned human aquaporin-1 is a cyclic GMP-gated ion channel. Mol. Pharmacol. 57:576–588

    PubMed  CAS  Google Scholar 

  • Arvan P., Castle D. 1998. Sorting and storage during secretory granule biogenesis: looking backward and looking forward. Biochem. J. 332:593–610

    PubMed  CAS  Google Scholar 

  • Baconnais S., Delavoie F., Zahm J.M., Milliot M., Terryn C., Castillon N., Banchet B., Michel J., Danos O., Merten M., Chinet T., Zierold K., Bonnet N., Puchelle E., Balossier G. 2005. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells. Exp. Cell Res. 309:296–304

    Article  PubMed  CAS  Google Scholar 

  • Borgnia M., Nielsen S., Engel A., Agre P. 1999. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 68:425–458

    Article  PubMed  CAS  Google Scholar 

  • Breckenridge L.J., Almers W. 1987. Final steps in exocytosis observed in a cell with giant secretory granules. Proc. Natl. Acad. Sci. USA 84:1945–1949

    Article  PubMed  CAS  Google Scholar 

  • Cho S.J., Cho J., Jena B.P. 2002. The number of secretory vesicles remains unchanged following exocytosis. Cell Biol. Int. 26:29–33

    Article  PubMed  Google Scholar 

  • Cho S.J., Sattar A.K., Jeong E.H., Satchi M., Cho J.A., Dash S., Mayes M.S., Stromer M.H., Jena B.P. 2002. Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc. Natl. Acad. Sci. USA 99:4720–4724

    Article  PubMed  CAS  Google Scholar 

  • Dannies P.S. 2002. Mechanism for storage of prolactin and growth hormone in secretory granules. Mol. Gent. Metab. 76:6–13

    Article  CAS  Google Scholar 

  • De Lisle R.C., Hopfer C. 1986. Electrolyte permeabilities of pancreatic zymogen granules: implications for pancreatic secretion. Am. J. Physiol. 250:G489–G496

    PubMed  Google Scholar 

  • Fernandez J.M., Villalon M., Verdugo P. 1991. Reversible condensation of the mast cell secretory products in vitro. Biophys. J. 59:1022–1027

    Article  PubMed  CAS  Google Scholar 

  • Ferri D., Mazzone A., Liquori G.E., Gassano G., Svelto M., Calamita G. 2003. Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatol. 38:947–957

    Article  CAS  Google Scholar 

  • Finkelstein A., Zimmerberg J., Cohen F.S. 1986. Osmotic swelling of vesicles: its role in the fusion of vesicles with planner phospholipids bilayer membranes and its possible role in exocytosis. Annu. Rev. Physiol. 48:163–174

    Article  PubMed  CAS  Google Scholar 

  • Frigeri A., Gropper M.A., Umenishi F., Kawashima M., Brown D., Verkman A.S. 1995. Localization of MIWC and GLIP water channel homologs in neuromuscular, epithelial and glandular tissues. J. Cell Sci. 108:2993–3002

    PubMed  CAS  Google Scholar 

  • Gasser K.W., DiDomenico J., Hopfer U. 1988. Secretagogues activate chloride transport pathways in pancreatic zymogen granules. Am. J. Physiol. 254:G93–G99

    PubMed  CAS  Google Scholar 

  • Gasser K.W., Goldsmith A., Hopfer U. 1990. Regulation of chloride transport in parotid secretory granules by membrane fluidity. Biochemistry 29:7282–7288

    Article  PubMed  CAS  Google Scholar 

  • Gasser K.W., Hopfer U. 1990. Chloride transport across the membrane of parotid secretory granules. Am. J. Physiol. 259:C413–C420

    PubMed  CAS  Google Scholar 

  • Gresz V., Kwon T.H., Gong H., Agre P., Steward M.C., King L.S., Nielsen S. 2004. Imminolocalization of AQP5 in rat parotid and submandibular salivary glands after stimulation or inhibition of secretion in vivo. Am. J. Physiol. 287:G151–G161

    CAS  Google Scholar 

  • Hill A.E., Shachar-Hill B., Shachar-Hill Y. 2004. What are aquaporins for? J. Membrane Biol. 197:1–32

    Article  CAS  Google Scholar 

  • Ishikawa Y., Eguchi T., Skowronski M.T., Ishida H. 1998. Acetylcholine acts on M3 muscarinic receptors and induces the translocation of aquaporin 5 water channel via cytosolic Ca2+ elevation in rat parotid glands. Biochem. Biophys. Res. Commun. 245:835–840

    Article  PubMed  CAS  Google Scholar 

  • Jacquot, J., Puchelle, E., Hinnrasky, J., Fuchey, C., Rettinger, G., Spilmont, C., Bonnet, N., Dieterle, A., Dreyer, D., Pavirani, A. 1993. Localization of the cystic fibrosis transmembrane conductance regulator in airway secretory glands Eur. Respir. J. 6:169–176

    PubMed  CAS  Google Scholar 

  • Jena B.P. 2004. Discovery of the porosome: revealing the molecular mechanism of secretion and membrane fusion in cells. J. Cell. Mol. Med. 8:1–21

    PubMed  CAS  Google Scholar 

  • Jena B.P. 2005. Cell secretion and membrane fusion. Domest. Anim. Endocrinol. 29:145–165

    Article  PubMed  CAS  Google Scholar 

  • Jena B.P., Schneider S.W., Geibel J.P., Webster P., Oberleithner H., Sritharan K.C. 1997. Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc. Natl. Acad. Sci. USA 94:13317–13322

    Article  PubMed  CAS  Google Scholar 

  • Jeremic A., Cho W.J., Jena B.P. 2005. Involvement of water channels in synaptic vesicle swelling. Exp. Biol. Med. 230:674-680

    CAS  Google Scholar 

  • Kelly M.L., Cho W.J., Jeremic A., Abu-Hamdah R., Jena B.P. 2004. Vesicle swelling regulates content expulsion during secretion. Cell Biol. Int. 28:709–716

    Article  PubMed  CAS  Google Scholar 

  • Kirkegaard P., Lundberg J.M., Poulsen S.S., Fahrenkrug J., Hokfelt T., Christiansen L. 1981. Vasoactive intestinal polypeptidergic nerves and Brunner’s gland secretion in the rat. Gastroenterol. 81:872–878

    CAS  Google Scholar 

  • Matsuki M., Hashimoto S., Shimono M., Murakami M., Fujita-Yoshigaki J., Furuyama S., Sugiya H. 2005. Involvement of aquaporin-5 water channel in osmoregulation in parotid secretory granules. J. Membrane. Biol. 203:119–116

    Article  CAS  Google Scholar 

  • Matsuzaki T., Suzuki T., Koyama H., Tanaka S., Takata K. 1999. Aquaporin-5 (AQP5), a water channel protein, in the rat salivary and lacrimal glands: immunolocalization and effect of secretory stimulation. Cell Tissue Res. 295:513–521

    Article  PubMed  CAS  Google Scholar 

  • Nadin C.Y., Rogers J., Tomlinson S., Edwardson J.M. 1989. A specific interaction in vitro between pancreatic zymogen granules and plasma membranes: stimulation by G-protein activators but not by Ca2+. J. Cell Biol. 109:2801–2808

    Article  PubMed  CAS  Google Scholar 

  • Parvin M.N., Kurabuchi S., Murdiastuti K., Yao C., Kosugi-Tanaka C., Akamatsu T., Kanamori N., Hosoi K. 2005. Subcellular redistribution of AQP5 by vasoactive intestinal polypeptide in the Brunner’s gland of the rat duodenum. Am. J. Physiol. 288:G1283–G1291

    CAS  Google Scholar 

  • Preston G.M., Jung J.S., Guggino W.B., Agre P. 1993. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 268:17–20

    PubMed  CAS  Google Scholar 

  • Raina S., Preston G.M., Guggino W.B., Agre P. 1995. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. J. Biol. Chem. 270:1908–1912

    Article  PubMed  CAS  Google Scholar 

  • Sattar A.A,, Boinpally R., Stromer M.H., Jena B.P. 2002. Gαi3 in pancreatic zymogen granules participates in vesicular fusion. J. Biochem. (Tokyo) 131:815–20

    CAS  Google Scholar 

  • Shachar-Hill B., Hill A.E. 2002. Paracellular fluid transport by epithelia. Int. Rev. Cytol. 215:319–350

    Article  PubMed  CAS  Google Scholar 

  • Smith J.K., Siddiqui A.A., Modica L.A., Dykes R., Simmons C., Schmidt J., Krishnaswamy G.A., Berk S.L. 1999. Interferon-α upregulates gene expression of aquaporin-5 in human parotid glands. J. Interferon Cytokine Res. 19:929–935

    Article  PubMed  CAS  Google Scholar 

  • Stanley E.F., Ehrenstein G. 1985. A model for exocytosis based on the opening of calcium-activated potassium channels in vesicles. Life Sci, 37:1985–95

    Article  PubMed  CAS  Google Scholar 

  • Thévenod F. 2002. Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am. J. Physiol. 283:C651–C672

    Google Scholar 

  • Verkman A.S. 2005. More than just water channels: unexpected cellular roles of aquaporins. J. Cell Sci. 118:3225–3232

    Article  PubMed  CAS  Google Scholar 

  • Verkman A.S., Mitra A.K. 2000. Structure and function of aquaporin water channels. Am. J. Physiol. 278:F13–F28

    CAS  Google Scholar 

  • Watson E.L., Dijulio D., Kauffman D., Iversen J., Robinovitch M.R., Izutsu K.T. 1992. Evidence for G proteins in rat parotid plasma membranes and secretory granules. Biochem. J. 285:441–449

    PubMed  CAS  Google Scholar 

  • Watson E.L., Izutsu K.T., Jacobson K.L., Dijulio D.H. 1997. The heterotrimeric GTP-binding protein, Gs, modulates the Cl- conductance of rat parotid acinar secretory granules. Biochem. Biophys Res. Commun. 238:638–642

    Article  PubMed  CAS  Google Scholar 

  • Yasui M., Kwon T.H., Knepper M.A., Nielsen S., Agre P. 1999. Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia. Proc. Natl. Acad. Sci. USA 96:5808–5813

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg J., Curran M., Cohen F.S., Brodwick M. 1987. Simultaneous electrical and optical measurements show that membrane fusion proceeds secretory granule swelling during exocytosis of beige mouse mast cells. Proc. Natl. Acad. Sci. USA 84:1585–1589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-Aid for Scientific Research from JSPS (16390534)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sugiya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugiya, H., Matsuki, M. AQPs and Control of Vesicle Volume in Secretory Cells. J Membrane Biol 210, 155–159 (2006). https://doi.org/10.1007/s00232-005-0853-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0853-5

Keywords

Navigation