Skip to main content
Log in

A New Approach to Epithelial Isotonic Fluid Transport: An Osmosensor Feedback Model

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A model for control of the transport rate and osmolarity of epithelial fluid (isotonic transport) is presented by using an analogy with the control of temperature and flow rate in a shower. The model brings recent findings and theory concerning the role of aquaporins in epithelia together with measurements of epithelial paracellular flow into a single scheme. It is not based upon osmotic equilibration across the epithelium but rather on the function of aquaporins as osmotic sensors that control the tonicity of the transported fluid by mixing cellular and paracellular flows, which may be regarded individually as hyper- and hypo-tonic fluids, to achieve near-isotonicity. The system is built on a simple feedback loop and the quasi-isotonic behavior is robust to the precise values of most parameters. Although the two flows are separate, the overall fluid transport rate is governed by the rate of salt pumping through the cell. The model explains many things: how cell pumping and paracellular flow can be coupled via control of the tight junctions; how osmolarity is controlled without depending upon the precise magnitude of membrane osmotic permeability; and why many epithelia have different aquaporins at the two membranes.

The model reproduces all the salient features of epithelial fluid transport seen over many years but also indicates novel behavior that may provide a subject for future research and serve to distinguish it from other schemes such as simple osmotic equilibration. Isotonic transport is freed from constraints due to limited permeability of the membranes and the precise geometry of the system. It achieves near-isotonicity in epithelia in which partial water transport by co-transporters may be present, and shows apparent electro-osmotic effects. The model has been developed with a minimum of parameters, some of which require measurement, but the model is flexible enough for the basic idea to be extended both to complex systems of water and salt transport that still await a clear explanation, such as intestine and airway, and to systems that may lack aquaporins or use other sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Boucher R.C. 1999. Molecular insights into the physiology of the thin film of airway surface liquid. J. Physiol. 516:631–638

    Article  PubMed  CAS  Google Scholar 

  2. Case R.M., Cook D.I., Hunter M., Steward M.C., Young J.A. 1985. Trans-epithelial transport of nonelectrolytes in the rabbit mandibular salivary-gland. J. Membrane Biol. 84:239–248

    Article  CAS  Google Scholar 

  3. Colegio O.R., Itallie C.M., McCrea H.J., Rahner C., Anderson J.M. 2002. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am. J. Physiol. 283:C142–C147

    CAS  Google Scholar 

  4. Davies M.G., Geddes D.M., Alton E.W.F.W. 2005. The effect of varying tonicity on nasal epithelial ion transport in cystic fibrosis. Am. J. Respir. Crit. Care Med. 171:760–763

    Article  PubMed  Google Scholar 

  5. Diamond J.M., Bossert W.H. 1967. Standing-gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50:2061–2083

    Article  PubMed  CAS  Google Scholar 

  6. Fischbarg J., Diecke F.P.J. 2005. A mathematical model of electrolyte and fluid transport across corneal endothelium. J. Membrane Biol. 203:41–56

    Article  CAS  Google Scholar 

  7. Fischbarg J., Diecke F.P.J., Iserovich P., Rubashkin A. 2006. The role of the tight junction in paracellular fluid transport across corneal endothelium. Electro-osmosis as a driving force. J. Membrane Biol. 210:000–000

    Google Scholar 

  8. Geibel J.P. 2005. Secretion and absorption by colonic crypts. Annu. Rev. Physiol. 67:471–490

    Article  PubMed  CAS  Google Scholar 

  9. Guo P., Weinstein A.M., Weinbaum S. 2003. A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium. Am. J. Physiol. 285:F241–F257

    CAS  Google Scholar 

  10. Hannafin J., Kinne-Safran E., Friedman D., Kinne R. 1983. Presence of a sodium-potassium chloride cotransport system in the rectal gland of Squalus acanthias. J. Membrane Biol. 75:73–83

    Article  CAS  Google Scholar 

  11. Hernandez C.S., Gonzalez E., Whittembury G. 1995. The paracellular channel for water secretion in the upper segment of the Malpighian tubule of Rhodnius prolixus. J. Membrane Biol. 148:233–242

    CAS  Google Scholar 

  12. Hill A.E., Hill B.S. 1987. Steady state analysis of ion fluxes in Necturus gall bladder epithelial cells. J. Physiol. 382:15–34

    PubMed  CAS  Google Scholar 

  13. Hill A.E., Hill B.S. 1987. Transcellular Na fluxes and pump activity in Necturus gall bladder epithelial cells. J. Physiol. 382:35–49

    PubMed  CAS  Google Scholar 

  14. Hill A.E., Shachar-Hill B. 1993. A mechanism for isotonic fluid flow through the tight junctions of Necturus gallbladder epithelium. J. Membrane Biol. 136:253–262

    Article  CAS  Google Scholar 

  15. Hill A.E., Shachar-Hill B. 1997. Fluid recirculation in Necturus intestine and the effect of alanine. J. Membrane Biol. 158:119–126

    Article  CAS  Google Scholar 

  16. Hill A.E., Shachar-Hill B., Shachar-Hill Y. 2004. What are aquaporins for? J. Membrane Biol. 197:1–32

    Article  CAS  Google Scholar 

  17. Kovbasnjuk O., Leader J.P., Weinstein A.M., Spring K.R. 1998. Water does not flow across the tight junctions of MDCK cell epithelium. Proc. Nat. Acad. Sci. USA 95:6526–6530

    Article  PubMed  CAS  Google Scholar 

  18. Loo D.D.F., Wright E.M., Zeuthen T. 2002. Water pumps. J. Physiol. 542:53–60

    Article  PubMed  CAS  Google Scholar 

  19. Loo D.D.F., Zeuthen T., Chandy G., Wright E.M. 1996. Cotransport of Water By the Na+/Glucose Cotransporter. Proc. Natl. Acad. Sci. USA 93:13367–13370

    Article  PubMed  CAS  Google Scholar 

  20. Ma T.H., Song Y.L., Gillespie A., Carlson E.J., Epstein C.J., Verkman A.S. 1999. Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels. J. Biol. Chem. 274:20071–20074

    Article  PubMed  CAS  Google Scholar 

  21. Madara J.L., Pappenheimer J.R. 1987. Structural basis for physiological regulation of paracellular pathways in intestinal epithelia. J. Membrane Biol. 100:149–164

    Article  CAS  Google Scholar 

  22. Murakami M., Murdiastuti K., Hosoi X., Hill A.E. 2006. AQP and control of fluid transport in a salivary gland. J. Membr. Biol. 210:000–000

    Google Scholar 

  23. Murakami M., Shachar-Hill B., Hill A.E., Steward M. 2001. The paracellular component of water flow in the rat submandibular gland. J.Physiol. 537:899–906

    Article  PubMed  CAS  Google Scholar 

  24. Pappenheimer J.R. 1993. On the coupling of membrane digestion with intestinal absorption of sugars and amino-acids. Am. J. Physiol. 265:G409–G417

    PubMed  CAS  Google Scholar 

  25. Pappenheimer J.R., Reiss K.Z. 1987. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J. Membrane Biol. 100:123–136

    Article  CAS  Google Scholar 

  26. Sanchez J.M., Li Y., Rubashkin A., Iserovich P., Wen Q., Ruberti J.W., Smith R.W., Rittenband D., Kuang K., Diecke F.P.J., Fischbarg J. 2002. Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. J. Membrane Biol. 187:37–50

    Article  CAS  Google Scholar 

  27. Schnermann J., Chou C.L., Ma T.H., Traynor T., Knepper M.A., Verkman A.S. 1998. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. Proc. Natl. Acad. Sci. USA 95:9660–9664

    Article  PubMed  CAS  Google Scholar 

  28. Segel L.A. 1970. Standing-gradient flows driven by active solute transport. J. Theoret. Biol. 29:233–250

    Article  CAS  Google Scholar 

  29. Shachar-Hill B., Hill A.E. 1993. Convective fluid-flow through the paracellular system of Necturus gallbladder epithelium as revealed by dextran probes. J. Physiol. 468:463–486

    PubMed  CAS  Google Scholar 

  30. Shachar-Hill B., Hill A.E. 2002. Paracellular fluid transport by epithelia. Int. Rev. Cytol. 215:319–350

    PubMed  CAS  Google Scholar 

  31. Silva P., Stoff J., Field M., Fine L., Forrest J.N., Epstein F.H. 1977. Mechanism of active chloride secretion by shark rectal gland: role of Na-K-ATPase in chloride transport. Am. J. Physiol. 233:F298–F306

    PubMed  CAS  Google Scholar 

  32. Song Y.L., Verkman A.S. 2001. Aquaporin-5 dependent fluid secretion in airway submucosal glands. J. Biol. Chem. 276:41288–41292

    Article  PubMed  CAS  Google Scholar 

  33. Vallon V., Verkman A.S., Schnermann J. 2000. Luminal hypotonicity in proximal tubules of aquaporin-1- knockout mice. Am. J. Physiol. 278:F1030–F1033

    CAS  Google Scholar 

  34. Wedner H.J., Diamond J.M. 1969. Contributions of unstirred-layer effects to apparent electrokinetic phenomena in the gallbladder. J. Membrane Biol. 1:92–108

    Article  CAS  Google Scholar 

  35. Zeuthen T. 2002. General models for water transport across leaky epithelia. Int. Rev. Cytol. 215:285–317

    Article  PubMed  CAS  Google Scholar 

  36. Zeuthen T., Stein W.D. 1994. Cotransport of salt and water in membrane proteins — Membrane proteins as osmotic engines. J. Membrane Biol. 137:179–195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.E. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, A., Shachar-Hill, B. A New Approach to Epithelial Isotonic Fluid Transport: An Osmosensor Feedback Model. J Membrane Biol 210, 77–90 (2006). https://doi.org/10.1007/s00232-005-0847-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0847-3

Keywords

Navigation