Skip to main content

Advertisement

Log in

The Effect of PS Content on the Ability of Natural Membranes to Fuse with Positively Charged Liposomes and Lipoplexes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abe A., Miyanohara A., Friedman T. 1998. Enhanced gene transfer with fusogenic liposomes containing vesicular stomatitis virus G glycoprotein. J. Virol. 72:6159–6163

    CAS  PubMed  Google Scholar 

  2. Almofti M.R., Harashima H., Shinohara Y., Almofti A., Baba Y., Kiwada H. 2003. Cationic liposome-mediated gene delivery: Biophysical study and mechanism of internalization. Arch. Biochem. Biophys. 410:246–253

    PubMed  Google Scholar 

  3. Bailey A.L., Cullis P.R. 1994. Modulation of membrane fusion by asymmetric transbilayer distributions of amino lipids. Biochemistry 33:12573–12580

    CAS  PubMed  Google Scholar 

  4. Bailey A.L., Cullis P.R. 1997. Membrane fusion with cationic liposomes: effects of target membrane lipid composition. Biochemistry 36:1628–1634

    CAS  PubMed  Google Scholar 

  5. Baldwin J.M., O’Reilly R., Whitney M., Lucy J.A. 1990. Surface exposure of phosphatidylserine is associated with the swelling and osmotically-induced fusion of human erythrocytes in the presence of Ca2+. Biochim. Biophys. Acta 1028:14–20

    CAS  PubMed  Google Scholar 

  6. Baumann M., Sowers A.E. 1996. Membrane skeleton involvement in cell fusion kinetics: a parameter that correlates with erythrocyte osmotic fragility. Biophys. J. 71:336–340

    CAS  PubMed  Google Scholar 

  7. Bhattacharya S., Mandal S.S. 1998. Evidence of interlipidic ion-pairing in anion-induced DNA release from cationic amphiphile-DNA complexes. Mechanistic implications in transfection. Biochemistry 37:7764–7777

    Article  CAS  PubMed  Google Scholar 

  8. Cevc G., Richardsen H. 1999. Lipid vesicles and membrane fusion. Adv. Drug Deliv. Rev. 38:207–232

    Article  CAS  PubMed  Google Scholar 

  9. Clague M.J., Cherry R.J. 1989. A comparative study of band 3 aggregation in erythrocyte membranes by mellitin and other cationic agents. Biochim. Biophys. Acta 980:93–99

    CAS  PubMed  Google Scholar 

  10. Clamme J.P., Bernacchi S., Vuilleumier C., Duportail G., Mély Y. 2000. Gene transfer by cationic surfactants is essentially limited by the trapping of the surfactant/DNA complexes onto the cell membrane: a fluorescence investigation. Biochim. Biophys. Acta 1467:347–361

    CAS  PubMed  Google Scholar 

  11. Connor J., Gillum K., Schroit A.J. 1990. Maintance of lipid asymmetry in red blood cells and ghosts: effect of divalent cations and serum albumin on the transbilayer distribution of phosphatidylserine. Biochim. Biophys. Acta 1025:82–86

    CAS  PubMed  Google Scholar 

  12. Devaux P.F. 1991. Static and dynamic lipid asymmetry in cell membranes, Biochemistry 30:1163–1173

    Article  CAS  PubMed  Google Scholar 

  13. Dubois M., Gilles K., Hamilton J.K., Rebers P.A., Smith F. 1956. Colorimetric method for the determination of sugars and related substances. Anal. Chem. 28:350–356

    Article  CAS  Google Scholar 

  14. Duguid J.G., Li C., Shi M., Logan M.J., Alila H., Rolland A., Tomlinson E., Sparrow J.T., Smith L.C. 1998. A physicochemical approach for predicting the effectiveness of peptide-based gene delivery systems for use in plasmid-based gene therapy. Biophys. J. 74:2802–2814

    CAS  PubMed  Google Scholar 

  15. Duzgunes N., Simoes S., Konopka K., Rossi J.J., Pedroso de Lima M.C. 2001. Delivery of novel macromolecular drugs against HIV-1. Expert. Opin. Biol. Ther. 1:949–70

    PubMed  Google Scholar 

  16. Eastman S.J., Hope M.J., Wong K.F., Cullis P.R. 1992. Influence of phospholipid asymmetry on fusion between large unilamellar vesicles. Biochemistry 31:4262–4268

    CAS  PubMed  Google Scholar 

  17. Fadok V.A., de Cathelineau A., Daleke D.L., Henson P.M., Bratton D.L. 2001. Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J. Biol. Chem. 276:1071–1077

    Article  CAS  PubMed  Google Scholar 

  18. Friend D.S., Papahadjopoulos D., Debs R.J. 1996. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta 1278:41–50

    PubMed  Google Scholar 

  19. Fuller N., Benatti C.R., Rand R.P. 2003. Curvature and bending constants for phosphatidylserine-containing membranes. Biophys. J. 85:1667–74

    CAS  PubMed  Google Scholar 

  20. Girão da Cruz T., Simoes S., Pires P., Nir S., Pedroso de Lima M. 2001. Kinetic analysis of the initial steps involved in lipoplex-cell interactions: effect of various factors that influence transfection activity. Biochim. Biophys. Acta 1510:136–151

    Google Scholar 

  21. Hafez I.M., Cullis P.R. 2001. Roles of lipid polimorphism in intracellular delivery. Adv. Drug Deliv. Rev. 47:139–148

    Article  CAS  PubMed  Google Scholar 

  22. Hägerstrand H., Danieluk M., Bobrowska-Hägerstrand M., Pector V., Ruysschaert J-M., Kralj-Iglič V., Iglič A. 1999. Liposomes composed of a double-chain cationic amphiphile (vectamidine) induce their own encapsulation into human erythrocytes. Biochim. Biophys. Acta 1421:125–130

    PubMed  Google Scholar 

  23. Harvie P., Wong F.M.P., Bally M.B. 1998. Characterization of lipid DNA interactions. I. Destabilization of bound lipids and DNA dissociation. Biophys. J. 75:1040–1051

    CAS  PubMed  Google Scholar 

  24. Hui S.W., Langner M., Zhao Y.L., Ross P., Hurley E., Chan K. 1996. The role of helper lipids in cationic liposome-mediated gene transfer. Biophys. J. 71:590–599

    CAS  PubMed  Google Scholar 

  25. Hyde S.C., Southern K.W., Gileadi U., Fitzjohn E.M., Mofford K.A., Waddell B.E., Gooi H.C., Goddard C.A., Hannavy K., Smyth S.E., Egan J.J., Sorgi F.L., Huang L., Cuthbert A.W., Evans M.J., Colledge W.H., Higgins C.F., Webb A.K., Gill D.R. 2000. Repeated administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther. 7:1156–1165

    Article  CAS  PubMed  Google Scholar 

  26. Koltover I., Salditt T., Radler J.O., Säfinya C.R. 1998. An inverted hexagonal phase of cationic liposomes-DNA complexes related to DNA release and delivery. Science 281:78–81

    Article  CAS  PubMed  Google Scholar 

  27. Kono K., Henmi A., Takagishi T. 1999. Temperature-controlled interaction of thermosensitive polymer-modified cationic liposomes with negatively charged phospholipid membranes. Biochim. Biophys. Acta 1421:183–197

    CAS  PubMed  Google Scholar 

  28. Koulov A.V., Vares L., Mahim J., Smith B.D. 2002. Cationic triple-chain amphiphiles facilitate vesicle fusion compared to double-chain or single-chain analogues. Biochim. Biophys. Acta 1564:459–465

    CAS  PubMed  Google Scholar 

  29. Li L., Hui S. 1997. The effect of lipid molecular packing stress on cationic liposome-induced rabbit erythrocyte fusion. Biochim. Biophys. Acta 1323:105–116

    CAS  PubMed  Google Scholar 

  30. Liu F. Huang L. 2002. Development of non-viral vectors for systemic gene delivery. J. Control. Release 78:259–266

    Article  CAS  PubMed  Google Scholar 

  31. Lutz H.U., Liu S.C., Palek J. 1977. Release of spectrin free vesicles from human erythrocytes during ATP depletion. J. Cell. Biol. 73:548–60

    Article  CAS  PubMed  Google Scholar 

  32. Manno S., Takakuwa Y., Mohandas N. 2002. Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserine – skeletal protein interactions modulate membrane stability. Proc. Natl. Acad. Sci. USA 99:1943–1948

    Article  CAS  PubMed  Google Scholar 

  33. May S., Harries D., Ben-Shaul A. 2000. The phase behavior of cationic lipid-DNA complexes. Biophys. J. 78:1681–1697

    CAS  PubMed  Google Scholar 

  34. Meidan V.M., Cohen J.S., Amariglio N., Hirsch-Lerner D., Barenholz Y. 2000. Interaction of oligonucleotides with cationic lipids: the relationship between electrostatics, hydration and state of aggregation. Biochim. Biophys. Acta 1464:251–261

    CAS  PubMed  Google Scholar 

  35. Miyata T., Yamamoto S., Sakamoto K., Morishita R., Kaneda Y. 2001. Novel immunotherapy for peritoneal dissemination of murine colon cancer with macrophage inflammatory protein-1beta mediated by a tumor-specific vector, HVJ cationic liposomes. Cancer Gene Ther. 8:852–60

    Article  CAS  PubMed  Google Scholar 

  36. Nabel G.J., Gordon D., Bishop D.K., Nickoloff B.J., Yang Z.Y., Aruga A., Cameron M.J., Nabel E.G., Chang A.E. 1996. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposomes complexes. Proc. Natl. Acad. Sci. USA 93:15388–15393

    Article  CAS  PubMed  Google Scholar 

  37. Nakanishi M., Noguchi A. 2001. Confocal and probe microscopy to study gene transfection mediated by cationic liposomes with a cholesterol derivative. Adv. Drug Deliv. Rev. 52:197–201

    Article  CAS  PubMed  Google Scholar 

  38. Noguchi A., Furuno T., Kawaura C., Nakanishi M. 1998. Membrane fusion plays important role in gene transfection mediated by cationic liposomes. FEBS Lett. 433:169–173

    Article  CAS  PubMed  Google Scholar 

  39. Oberle V., Bakowsky U., Zuhorn I.S., Hoekstra D. 2000. Lipoplex formation under equilibrium conditions reveals a three-step mechanism. Biophys. J. 79:1447–1454

    CAS  PubMed  Google Scholar 

  40. El Ouahabi A., Thiry M., Pector V., Fuks R., Ruysschaert J.-M., Vandenbranden M. 1997. The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids. FEBS Lett. 414:187–192

    Article  CAS  PubMed  Google Scholar 

  41. Pantazatos D.P., MacDonald R.C. 1999. Directly observed membrane fusion between oppositely charged phospholipid bilayers. J. Membrane Biol. 170:27–38

    Article  CAS  Google Scholar 

  42. Pantazatos D.P., Pantazatos S.P., MacDonald R.C. 1999. Bilayer mixing, fusion, and lysis following the interaction of populations of cationic and anionic phospholipid bilayer vesicles. J. Membrane Biol. 194:129–139

    Google Scholar 

  43. Pantazatos S.P., MacDonald R.C. 2003. Real-time observation of lipoplex formation and interaction with anionic bilayer vesicles. J Membrane Biol. 191:99–112

    Article  CAS  Google Scholar 

  44. Pedroso de Lima M.C., Simões S., Pires P., Gaspar R., Slepushkin V., Düzgünes N. 1999. Gene delivery mediated by cationic liposomes: from biophysical aspects to enhancement of transfection. Mol. Membrane Biol. 16:103–109

    Google Scholar 

  45. Peterson G.L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83:346–356

    Article  CAS  PubMed  Google Scholar 

  46. Pires P., Simoes S., Nir S., Gaspar R., Düzgünes N., Pedroso de Lima M.C. 1999. Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. Biochim. Biophys. Acta 1418:71–84

    CAS  PubMed  Google Scholar 

  47. Rouse R.J., Seifried W., Mistry S.K., Goins W.F., Glorioso J.C. 2000. Herpes simplex virus-enhanced cationic lipid/DNA-mediated transfection. Biotechniques 29:810–814

    CAS  PubMed  Google Scholar 

  48. Rouser G., Siakatos A., Fleischer S. 1966. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1:85–86

    CAS  Google Scholar 

  49. Schewe M., Muller P., Korte T., Herman A. 1992. The role of phospholipid asymmetry in calcium-phosphate-induced fusion of human erythrocytes. J. Biol. Chem. 267:5910–5915

    CAS  PubMed  Google Scholar 

  50. Schreier H., Gagne L., Bock T., Erdos G.W., Druzgala P., Conary J.T., Muller B.W. 1997. Physicochemical properties and in vitro toxicity of cationic liposome cDNA complexes. Pharm. Acta Helv. 72:215–23

    CAS  PubMed  Google Scholar 

  51. Senior J.H., Trimble K.R., Maskiewicz R. 1991. Interaction of positively-charged liposomes with blood; implications for their application in vivo. Biochim. Biophys. Acta 1070:173–179

    CAS  PubMed  Google Scholar 

  52. Shichiri M., Tanaka A., Hirata Y. 2003. Intravenous gene therapy for familial hypercholesterolemia using ligand-facilitated transfer of a liposome: LDL receptor gene complex. Gene Ther. 1:827–31

    Google Scholar 

  53. Simberg D., Danino D., Talmon Y., Minsky A., Ferrari M.E., Wheeler C.J., Barenholz Y. 2001. Phase behavior, DNA ordering, and size instability of cationic lipoplexes. J. Biol. Chem. 276:47453–47459

    Article  CAS  PubMed  Google Scholar 

  54. Stamatatos L., Leventis R., Zuckermann M.J., Silvius J.R. 1988. Interaction of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry 27:3917–3925

    Article  CAS  PubMed  Google Scholar 

  55. Stegmann T., Legendre J.-Y. 1997. Gene transfer mediated by cationic lipids: lack of correlation between lipid mixing and transfection. Biochim. Biophys. Acta 1325:71–79

    CAS  PubMed  Google Scholar 

  56. Struck D., Hoekstra D., Pagano R. 1981. Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4198

    Article  CAS  PubMed  Google Scholar 

  57. Subramanian M., Holopainen J.M., Paukku T., Eriksson O., Huhtaniemi I., Kinnunen P.K. 2000. Characterization of three novel cationic lipids as liposomal complexes with DNA. Biochim. Biophys. Acta 1466:289–305

    CAS  PubMed  Google Scholar 

  58. Tarahovsky Y.S., Koynova R., MacDonald R.C. 2004. DNA release from lopoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion. Biophys. J. 87:1054–64

    Article  CAS  PubMed  Google Scholar 

  59. Wasan E.K., Harvie P., Edwards K., Karlsson G., Bally M.B. 1999. A multi-step assay to model structural changes in cationic lipoplexes used for in vitro transfection. Biochim. Biophys. Acta 1461:27–46

    CAS  PubMed  Google Scholar 

  60. Wattiaux R., Jadot M., Warnier-Pirotte M.T., Wattiaux-De Coninck S. 1997. Cationic lipids destabilize lysosomal membrane in vitro. FEES Lett. 417:199–202

    Article  CAS  PubMed  Google Scholar 

  61. Williamson P., Schlegel R.A. 2002. Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim. Biophys. Acta 1585:53–63

    CAS  PubMed  Google Scholar 

  62. van der Woude I., Visser H.W., ter Beest M.B., Waganaar A., Ruiters M.H., Engberts J.B., Hoekstra D. 1995. Parameters influencing the introduction of plasmid DNA into cells by the use of synthetic amphiphiles as a carrier system. Biochim. Biophys. Acta 1240:34–40

    PubMed  Google Scholar 

  63. Wrobel I., Collins D. 1995. Fusion of cationic liposomes with mammalian cells occurs after endocytosis. Biochim. Biophys. Acta 1235:296–304

    PubMed  Google Scholar 

  64. Xu Y., Szoka F.C. Jr. 1996. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 35:5616–5623

    CAS  PubMed  Google Scholar 

  65. Zelpati O., Szoka F.C. Jr. 1996. Mechanism of oligonucleotide release of cationic liposomes. Proc. Natl. Acad. Sci. USA 93:11493–11498

    Google Scholar 

  66. Zou Y., Zong G., Ling Y.H., Perez-Soler R. 2000. Development of cationic liposomes formulations for intratracheal gene therapy of early lung cancer. Cancer Gene Ther. 7:683–696

    Article  CAS  PubMed  Google Scholar 

  67. Zuhorn I.S., Hoekstra D. 2002. On the mechanism of cationic amphiphile-mediated transfection. To fuse or not to fuse: is that a question ? J. Membrane Biol. 189:167–179

    Article  CAS  Google Scholar 

  68. Zuidam N.J., Barenholz Y. 1997. Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin. Biochim. Biophys. Acta 1329:211–222

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by grant No. 3P04B01325 from the State Committee for Scientific Research (KBN), Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.F. Sikorski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stebelska, K., Dubielecka, P. & Sikorski, A. The Effect of PS Content on the Ability of Natural Membranes to Fuse with Positively Charged Liposomes and Lipoplexes. J Membrane Biol 206, 203–214 (2005). https://doi.org/10.1007/s00232-005-0793-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0793-0

Keywords

Navigation