Skip to main content
Log in

Non-Stationary Fluctuation Analysis of Macroscopic Gap Junction Channel Records

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Non-stationary fluctuation analysis was applied to macroscopic records of junctional currents arising from homotypic Cx37 and Cx43 gap junction channels expressed in RIN cells. The data were analyzed by a modification of existing analytical methods that takes endemic uncoupling into account. The results are consistent with both channels having open probabilities ranging from 0.7 to near unity for low transjunctional voltages. The analysis also yielded estimates of single-channel conductances for the two channel types similar to those seen in single-channel recordings. The results presented here show that fluctuation analysis can be used to extract single-channel gap junctional conductances from macroscopic double whole-cell recordings. These results also constitute empirically determined estimates of the open probability that are not model-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Beyer E.C. Gap junctions. 1993. Intl. Rev. Cyto. 137C:1–37

  • Brink P.R., Ramanan S.V., Christ G.J. 1996. Human connexin43 gap junction channel gating: evidence for mode shifts and/or heterogeneity. Amer. J. Physiol. 271:C321–C331

    PubMed  Google Scholar 

  • Brink P.R., Valiunas V., Ramanan S.V. 1999. High open probability demonstrated through non-stationary noise analysis in three gap junctions. International gap junction conference. Bern, Switzerland

    Google Scholar 

  • Bukauskas F., Bukauskiene A.A., Verselis V.K., Bennett M.V.L. 2002. Coupling asymmetry of heterotypic connexin45/connexin43-EGFP gap junction: Properties of fast and slow gating mechanisms. Proc. Nat. Acad. Sci. USA 99:7113–7118

    Article  PubMed  Google Scholar 

  • Bukauskas F., Elfgang C., Willecke K., Weingart R. 1995. Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected HeLa cells. Biophys. J. 68:2289–2298

    PubMed  Google Scholar 

  • Burt J.M., Spray D.C. 1988. Inotropic agents modulate gap junctional conductance between cardiac myocytes. Amer. J. Physiol. 254:H1206–H1210

    PubMed  Google Scholar 

  • Chen-Izu Y., Moreno A.P., Spangler S.R.A. 2001. Opposing gates model for voltage gating of gap junction channels. Amer. J. Physiol. 281:C1604–C1613

    Google Scholar 

  • Dun W., Jiang M., Tseng G.N. 1999. Allosteric effects of mutations in the extracellular S5-P loop on the gating and permeation properties of the hERG potassium channel. Pfluegers Arch. 439:141–149

    Article  Google Scholar 

  • Harris A.L. 2001. Emerging issues of connexin channels: biophysics fills the gap. Quart. Rev. Biophys. 34:325–472

    Google Scholar 

  • He D.S., Jiang J.X., Taffet S.M., Burt J.M. 1999. Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proc. Natl. Acad. Sci. 96:6495–6500

    Article  PubMed  Google Scholar 

  • Hille B. 1992. Ionic channels of excitable membranes. 2nd ed. Sinauer Associates, Inc. Sunderland, Ma

    Google Scholar 

  • Lu T., Ting A.Y.M., Mainland J., Jan L.Y., Schultz P.O., Yang Y. 2001. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat. Neurosci. 4:239–246

    Article  PubMed  Google Scholar 

  • Moreno A.P., Rook M.R., Fishman G.I., Spray D.C. 1994. Gap junction channels; distinct voltage sensitive and insensitive conductance states. Biophys J. 67:113–119

    PubMed  Google Scholar 

  • Musa H., Veenstra R.D. 2003. Voltage-dependent blockade of connexin40 gap junctions by spermine. Biophys. J. 84:205–219

    PubMed  Google Scholar 

  • Neyton J., Trautmann A. 1985. Single channel currents of an intercellular junction. Nature. 317:331–335

    Article  PubMed  Google Scholar 

  • Noceti F., Baldelli P., Wei X., Qin N., Toro L., Birnbaumer L., Stefani E. 1996. Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels. J. Gen. Physiol. 108:143–155

    Article  PubMed  Google Scholar 

  • Ramanan S.V., Brink P.R., Varadaraj K., Peterson E., Schirrmacher K., Banach K. 1999. A three-state model for connexin37 gating kinetics. Biophys. J. 76:2520–2529

    PubMed  Google Scholar 

  • Sigworth F.J. 1985. Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuations. Biophys J. 47:709–720

    PubMed  Google Scholar 

  • Sigworth F.J. 1980. The variance of sodium currents at the node of Ranvier. J. Physiol. 307:97–129

    PubMed  Google Scholar 

  • Takens-Kwak B. R., Jongsma H.J. 1992. Cardiac gap junctions: three distinct single channel conductances and their modulation by phosphorylating treatments. Pfluegers Arch. 422:198–200

    Article  Google Scholar 

  • Trexler E.B., Bennett M.V.L., Bargiello T.A., Verselis V.K. 1996. Voltage gating and permeation in a gap junction hemichannel. Proc. Nat. Acad. Sci. USA 93:5836–5841

    Article  PubMed  Google Scholar 

  • Valiunas V., Beyer E.C., Brink P.R. 2002. Cardiac gap junction channels show quantitative differences in selectivity. Circ. Res. 91:104–111

    Article  PubMed  Google Scholar 

  • Valiunas V., Bukauskas F., Weingart R. 1997. Conductances and selective permeability of connexin43 gap junction channels examined in Neonatal rat heart cells. Circ. Res. 80:708–719

    PubMed  Google Scholar 

  • Valiunas V., Weingart R., Brink P.R. 2000. Formation of heterotypic gap junction channels by connexins Cx40 and Cx43. Circ. Res. 86:e42–e49

    PubMed  Google Scholar 

  • Valiunas V., Weingart R. 2001. Co-operativity between mouse connexin30 gap junction channels. Pfluegers Arch. 441:756–60

    Article  Google Scholar 

  • Veenstra R.D., Wang Z., Beyer E.G., Ramanan S.V., Brink P.R. 1994. Connexin37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities. Biophys. J. 66:1915–1928

    PubMed  Google Scholar 

  • Veenstra R.D. 2001. Voltage clamp limitations of dual whole-cell gap junction current and voltage recordings. I. Conductance measurements. Biophys. J. 80:2231–2247

    PubMed  Google Scholar 

  • White T., Bruzzone R. 1996. Multiple connexin proteins in single intercellular channels: connexin compatability and functional consequences J. BioEner. Biomembranes. 28:339–350

    Article  Google Scholar 

  • Wilders R., Jongsma H. 1992. Limitation of the dual voltage clamp method in assaying conductance and kinetics of gap junction channels. Biophys. J. 63:942–953

    PubMed  Google Scholar 

  • Willecke K., Eiberger J., Degan J., Eckardt D., Romualdi A., Guldenagel M., Deutsch U., Sohl G. 2002. Structural and functional diversity of connexin genes in the mouse and human genome. Biol. Chem. 383:725–737

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the reviewers for their comments. This work was, in part, funded by Wellcome Trust grant 070069 (SVR) and NIH grant 55263 (PRB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.V. Ramanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanan, S., Valiunas, V. & Brink, P. Non-Stationary Fluctuation Analysis of Macroscopic Gap Junction Channel Records. J Membrane Biol 205, 81–88 (2005). https://doi.org/10.1007/s00232-005-0765-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0765-4

Keywords

Navigation