Skip to main content
Log in

Functional Interaction Between CFTR and Cx45 Gap Junction Channels Expressed in Oocytes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride (Cl) channel known to influence the function of other channels, including connexin channels. To further study potential functional interactions between CFTR and gap junction channels, we have co-expressed CFTR and connexin45 (Cx45) in Xenopus oocytes and monitored junctional conductance and voltage sensitivity by dual voltage clamp electrophysiology. In single oocytes expressing CFTR, an increase in cAMP caused by forskolin application induced a Cl current and increased membrane conductance; application of diphenylamine carboxylic acid (CFTR blocker) readily blocked the Cl current. With co-expression of CFTR and Cx45, application of forskolin to paired oocytes induced a typical outward current and increased junctional conductance (Gj). In addition, the presence of CFTR reduced the transjunctional voltage sensitivity of Cx45 channels without affecting the kinetics of junctional current inactivation. The drop in voltage sensitivity was further enhanced by forskolin application. The data indicate that CFTR influences cell-to-cell coupling mediated by Cx45 channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • L.C. Barrio T. Suchyna T. Bargiello L.X. Xu R.S. Roginski M.V.L. Bennett B.J. Nicholson (1991) ArticleTitleGap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage Proc. Natl. Acad. Sci. USA 88 8410–8414

    Google Scholar 

  • C.E. Bear F. Duguay A.L. Naismith N. Kartner J.W. Hanrahan J.R. Riordan (1991) ArticleTitleCl channel activity in Xenopus oocytes expressing the cystic fibrosis gene J Biol. Chem. 268 19142–19145

    Google Scholar 

  • F.F. Bukauskas A. Bukauskiene V.K. Verselis M.V.L. Bennett (2002) ArticleTitleCoupling asymmetry of heterotypic connexin 45/connexin 43-EGFP gap junctions: Properties of fast and slow gating mechanisms Proc. Natl. Acad. Sci. USA 99 7113–7118

    Google Scholar 

  • F.F. Bukauskas C. Peracchia (1997) ArticleTitleTwo distinct gating mechanisms in gap junction channels: CO2-sensitive and voltage-sensitive Biophys. J. 72 2137–2142

    Google Scholar 

  • M. Chanson I. Scerri S. Suter (1999) ArticleTitleDefective regulation of gap junction coupling in cystic fibrosis pancreatic duct cells J. Clin. Invest. 103 1677–1684

    Google Scholar 

  • J. Cheng W.B. Guggino (1998) ArticleTitleMolecular cloning and characterization of a novel PDZ domain containing protein that interact with CFTR Pediatr. Pulmonol. 26 IssueIDSuppl–17 213

    Google Scholar 

  • J. Cheng H. Wang W.B. Guggino (2004) ArticleTitleModulation of mature cystic fibrosis transmembrane regulator protein by the PDZ domain protein CAL J. Biol. Chem. 279 1892–1898

    Google Scholar 

  • S.A. Cunningham R.T. Worrell D.J. Benos R.A. Frizzell (1992) ArticleTitlecAMP-stimulated ion currents in Xenopus oocytes expressing CFTR cRNA Am. J. Physiol. 262 C783–C788

    Google Scholar 

  • A. DiStefano M. Wittner E. Schlatter H. Lang H. Englert R. Greger (1985) ArticleTitleDiphenylamine-2-carboxylate, a blocker of the Cl–conductive pathway in Cl transporting epithelia Pfluegers Arch. 405 S95–S100

    Google Scholar 

  • M.L. Drumm D.J. Wilkinson L.S. Smit R.T. Worrell T.V. Strong R.A. Frizzell D.C. Dawson F.S. Collins (1991) ArticleTitleChloride conductance expressed by delta F508 and other CFTRs in Xenopus oocytes Science 254 1797–1799

    Google Scholar 

  • S. Elenes A.D. Martinez M. Delmar E.G. Beyer A.P. Moreno (2001) ArticleTitleHeterotypic docking of Cx43 and Cx45 connexons blocks fast voltage gating of Cx43 Biophys. J. 81 1406–1418

    Google Scholar 

  • D. Gadsby A.C. Nairn (1999) ArticleTitleControl of CFTR channel gating by phosphorylation and nucleotide hydrolysis Physiol. Rev. 79 77–107

    Google Scholar 

  • R. Greger R. Schreiber M. Mall A. Wissner A. Hopf M. Briel M. Bleich R. Warth K. Kunzelmann (2001) ArticleTitleCystic fibrosis and CFTR Pfluegers Arch. 443 S3–S7

    Google Scholar 

  • P.M. Haggie B.A. Stanton A.S. Verkman (2004) ArticleTitleIncreased diffusional mobility of CFTR at the plasma membrane after deletion of its C-terminal PDZ binding motif J. Biol. Chem. 279 5494–5500

    Google Scholar 

  • A.L. Harris (2001) ArticleTitleEmerging issues of connexin channels: Biophysics fills the gap Quart. Rev. Biophys. 34 325–472

    Google Scholar 

  • PJ. Kausalya M. Reichert W. Hunziker (2001) ArticleTitleConnexin45 directly binds to ZO-1 and localizes to the tight junction region in epithelial MDCK cells FEES Lett. 505 92–96

    Google Scholar 

  • K. Kunzelmann (2001) ArticleTitleCFTR: interacting with everything? News Physiol Sci. 16 167–170

    Google Scholar 

  • J.G. Laing R.N. Manley-Markowski M. Koval R. Civitelli T.H. Steinberg (2001) ArticleTitleConnexin45 interacts with zonula occludens-1 in osteoblastic cells Cell. Comm. Adhes. 8 208–212

    Google Scholar 

  • A. Lazrak C. Peracchia (1993) ArticleTitleGap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells Biophys. J. 65 2002–2012

    Google Scholar 

  • C. Peracchia (1990a) ArticleTitleIncrease in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration J. Membrane Biol. 113 75–92

    Google Scholar 

  • C. Peracchia (1990b) ArticleTitleEffects of caffeine and ryanodine on low pHi-induced changes in gap junction conductance and calcium concentration in crayfish septate axons J. Membrane Biol. 117 79–89

    Google Scholar 

  • Peracchia, C. 2004. Chemical gating of gap junction channels. Roles of calcium, pH and calmodulin. In: The Connexins. J.C. Hervé, editor Biochim. Biophys. Acta (Biomembranes) 1662:61–80

  • C. Peracchia X. Wang L. Li L.L. Peracchia (1996) ArticleTitleInhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in Xenopus oocytes Pfluegers Arch. 431 379–387

    Google Scholar 

  • C. Peracchia X.G. Wang L.L. Peracchia (1999) ArticleTitleIs the chemical gate of connexins voltage sensitive? Behavior of Cx32 wild-type and mutant channels Am. J. Physiol. 276 C1361–C1373

    Google Scholar 

  • C. Peracchia X.G. Wang L.L. Peracchia (2000) ArticleTitleSlow gating of gap junction channels and calmodulin J. Membrane Biol. 78 55–70

    Google Scholar 

  • C. Peracchia K.C. Young X.G. Wang L.L. Peracchia (2003) ArticleTitleIs the voltage gate of connexins CO2-sensitive? Cx45 channels and inhibition of calmodulin expression J. Membrane Biol. 195 53–62

    Google Scholar 

  • D. Reczek M. Berryman A. Bretscher (1997) ArticleTitleIdentification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family J. Cell. Biol. 139 169–179

    Google Scholar 

  • M.M. Reddy P.M. Quinton (2002) ArticleTitleEffect of anion transport blockers on CFTR in human sweat duct J Membrane Biol. 189 15–25

    Google Scholar 

  • B.D. Schultz A.K. Singh D.C. Devor R.J. Bridges (1999) ArticleTitlePharmacology of CFTR chloride channel activity Physiol. Rev. 79 S109–S144

    Google Scholar 

  • E.M. Schwiebert M.E. Egan T.H. Hwang S.B. Fulmer S.S. Alien G.R. Cutting W.B. Guggino (1995) ArticleTitleCFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP Cell 81 1063–1073

    Google Scholar 

  • D.N. Sheppard M.J. Welsh (1999) ArticleTitleStructure and function of the CFTR chloride channel Physiol. Rev. 79 S23–S45

    Google Scholar 

  • D.C. Spray A.L. Harris M.V.L. Bennett (1981) ArticleTitleEquilibrium properties of a voltage-dependent junctional conductance J. Gen. Physiol. 77 77–93

    Google Scholar 

  • M.J. Stutts C.M. Canessa J.C. Olsen M. Hamrick J.A. Cohn B.C. Rossier R.C. Boucher (1995) ArticleTitleCFTR as a cAMP-dependent regulator of sodium channels Science 269 847–850

    Google Scholar 

  • M. Sugita Y. Yue J.K. Foskett (1998) ArticleTitleCFTR Cl channel and CFTR-associated ATP channel: distinct pores regulated by common gates EMBO J. 17 898–908

    Google Scholar 

  • S. Wang M. Li (2001) ArticleTitleMolecular studies of CFTR interacting proteins Pfluegers Arch. 443 S62–S64

    Google Scholar 

  • S. Wang H. Yue R.B. Derin W.B. Guggino M. Li (2000) ArticleTitleAccessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity Cell 103 169–179

    Google Scholar 

  • D. Yoo O. Olsen V. Raghuram J.K. Foskett P.A. Welling (2004) ArticleTitleAssembly and trafficking of a multiprotein ROMK (Kir 1.1) chan- nel complex by PDZ interactions J. Biol Chem. 279 6863–6873

    Google Scholar 

  • Z.R. Zhang S. Zeltwanger N.A. McCarty (2000) ArticleTitleDirect comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes J. Membrane Biol. 175 35–52

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institutes of Health, grant GM20113. The authors thank Dr. D.C. Devor (University of Pittsburgh) for the generous gift of human CFTR cDNA, Mr. Joey T. Chen for preparing CFTR cRNA, and Ms. Lillian M. Peracchia for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Peracchia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotsias, B., Peracchia, C. Functional Interaction Between CFTR and Cx45 Gap Junction Channels Expressed in Oocytes. J Membrane Biol 203, 143–150 (2005). https://doi.org/10.1007/s00232-005-0739-6

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-005-0739-6

Keywords

Navigation