Skip to main content
Log in

Pool boiling performance enhancement of micro/nanoporous coated surfaces fabricated through novel hybrid method

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An experimental study of nucleate pool boiling is conducted on the GNP/Ni-Al2O3 (GNP-graphene nano particle) nano-composite coated copper surfaces at atmospheric pressure using distilled water (DI) as boiling fluid. The microporous coated surfaces are fabricated using hybrid method (electrochemical deposition of GNP and nano-composite coating of Ni-Al2O3). A modified surface structure is generated as a result of this deposition, and different surface morphological parameters of this modified structure, such as surface structure, roughness and wettability, are investigated. Results show the enhancement in boiling heat transfer coefficient (BHTC) and critical heat flux (CHF) in nano-composite coated surfaces compared to the bare Cu surface. The improvement in boiling performance is mostly attributable to the enhancement of roughness and wettability as well as the higher thermal conductivity of the GNP/Ni-Al2O3 nano-coating. The highest CHF of 2217 (kW/m2) and BHTC of 112.83 (kW/m2K) is found in case of composite nano-coated superhydrophilic (CNCS) surfaces, which are 104% and 123% more than the bare Cu surface. High-speed visualization is used to conduct a quantitative investigation of the dynamics of bubble, including active bubble site density, emission frequency of the bubble, bubble departure diameter and their impact on the performance of pool boiling heat transfer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data may be available on request.

Abbreviations

BHTC [kW/m2k]:

Boiling heat transfer coefficient

CHF [kW/m2]:

Critical heat flux

kcu [W/mK]:

Copper thermal conductivity

Ra [mm]:

Value of average surface roughness

H [kW/m2k]:

Coefficient of heat transfer

q// [kW/m2]:

Heat flux

dT/dx [K/m]:

Temperature gradient

T1 [K]:

Thermocouple 1 temperature

T2 [K]:

Thermocouple 2 temperature

T3 [K]:

Thermocouple 3 temperature

ΔT [K]:

Wall superheat

Tf [K]:

Saturation temperature of boiling fluid

Ts [K]:

Temperature of surface

x [m]:

Distance between thermocouple

y [m]:

Distance between thermocouple 1 and testing sample

Dd [m]:

Departure diameter of bubble

Na [cm 2]:

Active nucleation site density

CA [θ]:

Contact angle

λ [J/kg]:

Latent heat of vaporization

μ [(N s)/m2]:

Dynamic viscosity

\(\uprho\) [kg/m3]:

Density

σ [N/m]:

Surface tension

Cp [J/(kg K)]:

Specific heat at constant pressure

References

  1. Moita AS, Teodori E, Moreira ALN (2015) Influence of surface topography in the boiling mechanisms. Int J Heat and Fluid Flow 52:50–63. https://doi.org/10.1016/j.ijheatfluidflow.2014.11.003

    Article  Google Scholar 

  2. Kim JS, Girard A, Jun S, Lee J, You SM (2018) Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces. Int J Heat Mass Transf 118:802–811. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.124

  3. Arenales MRM, Kumar S, Kuo LS, Chen PH (2020) Surface roughness variation effects on copper tubes in pool boiling of water. Int J Heat Mass Transf 151:119399. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119399

  4. Phan HT, Caney N, Marty P, Colasson S, Gavillet J (2009) Surface wettability control by nano-coating: The effects on pool boiling heat transfer and nucleation mechanism. Int J Heat Mass Transf 52:5459–5471. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.032

  5. Wang YQ, Luo JL, Heng Y, Mo DC, Lyu SS (2018) Wettability modification to further enhance the pool boiling performance of the micro nano bi-porous copper surface structure. Int J Heat Mass Transf 119:333–342. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.080

  6. Mohammadi N, Fadda D, Choi CK, Lee J, You SM (2018) Effects of surface wettability on pool boiling of water using super-polished silicon surfaces. Int J Heat Mass Transf 127:1128–1137. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.122

  7. Mogra A, Pandey PK, Gupta KK (2021) Influence of surface wettability and selection of coating material for enhancement of heat transfer performance. Materials Today: Proc 44:4433–4438. https://doi.org/10.1016/j.matpr.2020.10.595

    Article  Google Scholar 

  8. Jun S, Kim J, You SM, Kim HY (2016) Effect of heater orientation on pool boiling heat transfer from sintered copper microporous coating in saturated water. Int J Heat Mass Transf 103:277–284. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.030

    Article  Google Scholar 

  9. Chuang TJ, Chang YH, Ferng YM (2019) Investigating effects of heating orientations on nucleate boiling heat transfer, bubble dynamics, and wall heat flux partition boiling model for pool boiling. Appl Therm Eng 163:114358. https://doi.org/10.1016/j.applthermaleng.2019.114358

  10. Kim J, Jun S, Laksnarain R, You SM (2016) Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability. Int J Heat Mass Transf 101:992–1002. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.067

    Article  Google Scholar 

  11. Alvariño PF, Simón MLS, Guzella MS, Paz JMA, Jabardo JMS, Gómez LC (2019) Experimental investigation of the CHF of HFE-7100 under pool boiling conditions on differently roughened surfaces. Int J Heat Mass Transf 139:269–279. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.142

    Article  Google Scholar 

  12. Yim K, Lee J, Naccarato B, Kim KJ (2019) Surface wettability effect on nucleate pool boiling heat transfer with titanium oxide (TiO2) coated heating surface. Int J Heat Mass Transf 133:352–358. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.075

    Article  Google Scholar 

  13. Shi J, Jia X, Feng D, Chen Z, Dang C (2020) Wettability effect on pool boiling heat transfer using a multiscale copper foam surface. Int J Heat Mass Transf 146:118726. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118726

  14. Ahn HS, Sinha N, Zhang M, Banerjee D, Baughman SFRH (2006) Pool boiling experiments on multiwalled carbon nanotube (MWCNT) forests. J Heat Transf 128:1335–1342. https://doi.org/10.1115/1.2349511

    Article  Google Scholar 

  15. Ji X, Xu J, Zhao Z, Yang W (2013) Pool boiling heat transfer on uniform and non-uniform porous coating surfaces. Exp Therm Fluid Sci 48:198–212. https://doi.org/10.1016/j.expthermflusci.2013.03.002

    Article  Google Scholar 

  16. Lu MC, Chen R, Srinivasan V, Carey VP, Majumdar A (2011) Critical heat flux of pool boiling on Si nanowire array-coated surfaces. Int J Heat Mass Transf 54:5359–5367. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.007

    Article  Google Scholar 

  17. Cao Z, Liu B, Preger C, Wu Z, Zhang Y, Wang X, Messing ME, Deppert K, Wei J, Sundén B (2018) Pool boiling heat transfer of FC-72 on pin-fin silicon surfaces with nanoparticle deposition. Int J Heat Mass Transf 126:1019–1033. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.033

    Article  Google Scholar 

  18. Saelim N, Magaraphan R, Sreethawong T (2011) Preparation of sol–gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitised solar cells. Energy Convers Manage 52:2815–2818. https://doi.org/10.1016/j.enconman.2011.02.016

    Article  Google Scholar 

  19. Das S, Kumar DS, BhaumikS, (2016) Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl Therm Eng 96:555–567. https://doi.org/10.1016/j.applthermaleng.2015.11.117

    Article  Google Scholar 

  20. Tang Y, Tang B, Li Q, Qing J, Lu L, Chen K (2013) Pool-boiling enhancement by novel metallic nanoporous surface. Exp Therm Fluid Sci 44:194–198. https://doi.org/10.1016/j.expthermflusci.2012.06.008

    Article  Google Scholar 

  21. Sen P, Kalita S, Sen D, Das S, Das AK (2022) Pool boiling heat transfer on a micro-structured copper oxide surface with varying wettability. Chem Eng Technol 45:808–816. https://doi.org/10.1002/ceat.202100558

    Article  Google Scholar 

  22. Jo HS, An S, Park HG, Kim MW, Al-Deyab SS, James SC, Choi J, Yoon SS (2017) Enhancement of critical heat flux and superheat through controlled wettability of cuprous-oxide fractal-like nanotextured surfaces in pool boiling. Int J Heat Mass Transf 107:105–111. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.029

    Article  Google Scholar 

  23. Das S, Saha B, Bhaumik S (2017) Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure. Exp Therm Fluid Sci 81:454–465. https://doi.org/10.1016/j.expthermflusci.2016.09.009

    Article  Google Scholar 

  24. Huang CK, Lee CW, Wang CK (2011) Boiling enhancement by TiO2 nanoparticle deposition. Int J Heat Mass Transf 54:4895–4903. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.001

    Article  Google Scholar 

  25. Kim SJ, Bang IC, Buongiorno J, Hu LW (2007) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf 50:4105–4116. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002

    Article  Google Scholar 

  26. Gupta SK, Misra RD (2018) Experimental study of pool boiling heat transfer on copper surfaces with Cu-Al2O3 nanocomposite coatings. Int J Heat Mass Transf 97:47–55. https://doi.org/10.1016/j.icheatmasstransfer.2018.07.004

    Article  Google Scholar 

  27. Jun S, Ray SS, Yarin AL (2013) Pool boiling on nano-textured surfaces. Int J Heat Mass Transf 62:99–111. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.046

    Article  Google Scholar 

  28. CilogluD BA (2015) A comprehensive review on pool boiling of nanofluids. Appl Therm Engg 84:45–63. https://doi.org/10.1016/j.applthermaleng.2015.03.063

    Article  Google Scholar 

  29. Ciloglu D (2017) An experimental investigation of nucleate pool boiling heat transfer of nanofluids from a hemispherical surface. Heat Transf Engg 38(10):919–930. https://doi.org/10.1080/01457632.2016.1212571

    Article  Google Scholar 

  30. Bolukbasi A, Ciloglu D (2011) Pool boiling heat transfer characteristics of vertical cylinder quenched by SiO2-waternanofluids. Int J Therm Sci 50(6):1013–1021. https://doi.org/10.1016/j.ijthermalsci.2011.01.011

    Article  Google Scholar 

  31. MaoL, Zhou W, Hu X, He Y, Zhang G, Zhang L, Fu R (2020) Pool boiling performance and bubble dynamics on graphene oxide nano-coating surface. Int J Therm Sci 147:106154. https://doi.org/10.1016/j.ijthermalsci.2019.106154

  32. Seo H, Chu JH, KwonbSY BIC (2015) Pool boiling CHF of reduced graphene oxide, graphene, and SiC-coated surfaces under highly wettable FC-72. Int J Heat Mass Transf 82:490–502. https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.019

    Article  Google Scholar 

  33. Zhou W, Mao L, Hu X, He Y (2019) An optimised graphene oxide self-assembly surface for significantly enhanced boiling heat transfer. Carbon 150:168–178. https://doi.org/10.1016/j.carbon.2019.04.119

    Article  Google Scholar 

  34. Rishi AM, Kandlikar SG, Gupta A (2019) Improved wettability of graphene nanoplatelets (GNP)/copper porous coatings for dramatic improvements in pool boiling heat transfer. Int J Heat Mass Transf 132:462–472. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.169

    Article  Google Scholar 

  35. Gupta SK, Misra RD (2019) Effect of two-step electrodeposited Cu–TiO2 nanocomposite coating on pool boiling heat transfer performance. J Therm Anal Calorim 136:1781–1793. https://doi.org/10.1007/s10973-018-7805-7

    Article  Google Scholar 

  36. Rishi AM, Gupta A, Kandlikar SG (2018) Improving Aging Performance of Electrodeposited Copper Coatings during Pool Boiling. Appl Therm Eng 140:406–414. https://doi.org/10.1016/j.applthermaleng.2018.05.061

    Article  Google Scholar 

  37. Gheitaghy AM, Saffari H, Mohebbi M (2016) Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating. Exp Therm Fluid Sci 76:87–97. https://doi.org/10.1016/j.expthermflusci.2016.03.011

    Article  Google Scholar 

  38. Patil CM, Santhanam KSV, Kandlikar SG (2014) Development of a two-step electrodeposition process for enhancing pool boiling. Int J Heat Mass Transf 79:989–1001. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.062

    Article  Google Scholar 

  39. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling of liquids. Trans ASME 74:969–975. https://doi.org/10.1115/1.4015984

    Article  Google Scholar 

  40. Fang X, Dong A (2016) A comparative study of correlations of critical heat flux of pool boiling. J Nucl Sci Tech 54:1–12. https://doi.org/10.1080/00223131.2016.1209138

    Article  Google Scholar 

  41. O'Hanley H, Coyle C, Buongiorno J, McKrell T, Hu LW (2013) Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux. Appl Phys Lett 103:024102. https://doi.org/10.1063/1.4813450

  42. Phan HT, Caney N, Marty P, Colasson S, Gavillet J (2009) Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism. Int J Heat Mass Transf 52:5459–5471. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.032

    Article  Google Scholar 

  43. Chu KH, Enright R, Wang EN (2012) Structured surfaces for enhanced pool boiling heat transfer. Appl Phys Lett 100:241603. https://doi.org/10.1063/1.4724190

  44. Wang CH, Dhir VK (1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J Heat Transf 115:659–669. https://doi.org/10.1115/1.2910737

    Article  Google Scholar 

  45. Hsu CC, Chen PH (2012) Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. Int J Heat Mass Transf 55:3713–3719. https://doi.org/10.1016/j.ijheatmasstransfer.2012.03.003

    Article  Google Scholar 

  46. Mao L, Zhou W, Hu X, Yu H, Zhang G, Zhang L, Fu R (2020) Pool boiling performance and bubble dynamics on graphene oxide nanocoating surface. Int J Therm Sci 147:106154. https://doi.org/10.1016/j.ijthermalsci.2019.106154

  47. Kwark SM, Kumar R, Moreno G, Yoo J, You SM (2010) Pool boiling characteristics of low concentration nanofluids. Int J Heat Mass Transf 53:972–981. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.018

    Article  Google Scholar 

  48. Betz AR, Xu J, Qiu H, Attinger D (2010) Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?. Appl Phys Lett 97:141909. https://doi.org/10.1063/1.3485057

  49. Shi B, Wang YB, Chen K (2015) Pool boiling heat transfer enhancement with copper nanowire arrays. Appl Therm Eng 75:115–121. https://doi.org/10.1016/j.applthermaleng.2014.09.040

    Article  Google Scholar 

  50. Dharmendra M, Suresh S, C.S. Kumar S, Yang Q, (2016) Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate. Appl Therm Eng 99:61–71. https://doi.org/10.1016/j.applthermaleng.2015.12.081

    Article  Google Scholar 

  51. Das AK, Das PK, Saha P (2007) Nucleate boiling of water from plain and structured surfaces. Exp Therm Fluid Sci 31:967–977. https://doi.org/10.1016/j.expthermflusci.2006.10.006

    Article  Google Scholar 

  52. Cook D, Kandlikar SG (2012) Effect of open microchannel geometry on pool boiling enhancement. Int J Heat Mass Transf 55:1004–1013. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.010

    Article  Google Scholar 

  53. Mori S, Okuyama K (2009) Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media. Int J Multiph Flow 35:946–951. https://doi.org/10.1016/j.ijmultiphaseflow.2009.05.003

    Article  Google Scholar 

  54. Cole R (1967) Bubble frequencies and departure volumes at sub atmospheric pressures. AIChE J 13:779–783. https://doi.org/10.1002/aic.690130434

    Article  Google Scholar 

  55. Zuber N (1959) Hydrodynamic aspects of boiling heat transfer. United States Atomic Energy Commission, Technical Information Service. https://doi.org/10.2172/4175511

    Article  Google Scholar 

  56. Fritz W (1935) Berechnung des maximale volume von dampfblasen. Phys Z 36:379–384

    Google Scholar 

  57. Zuber N (1963) Nucleate boiling. The region of isolated bubbles and the similarity with natural convection. Int J Heat Mass Transf 6:53–78. https://doi.org/10.1016/0017-9310(63)90029-2

    Article  Google Scholar 

  58. Kocamustafaogullari G, Ishii M (1983) Aireinterfacialeetdensite de sites de nucleation dans les systemes en ebullition. Int J Heat Mass Transf 26:1377–1387. https://doi.org/10.1016/S0017-9310(83)80069-6

    Article  Google Scholar 

  59. Benjamin RJ, Balakrishnan AR (1997) Nucleation Site Density in Pool Boiling of Saturated Pure Liquids: Effect of Surface Microroughness and Surface and Liquid Physical Properties. Exp Therm Fluid Sci 15:32–42. https://doi.org/10.1016/S0894-1777(96)00168-9

    Article  Google Scholar 

  60. Saeidi D, Alemrajabi AA (2013) Experimental investigation of pool boiling heat transfer and critical heat flux of nanostructured surfaces. Int J Heat Mass Transf 60:440–449. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.016

    Article  Google Scholar 

  61. Yeom H, Sridharan K, Corradini M (2015) Bubble dynamics in pool boiling on nanoparticle-coated surfaces. Heat Transf Eng 36:1013–1027. https://doi.org/10.1080/01457632.2015.979116

    Article  Google Scholar 

  62. Tey E, Hashim M, Ismail I (2015) Characterization of Cu-Al2O3 and Ni-Al2O3 nanocomposites electrodeposited on copper substrate. Materials Sci Forum 846:471–478. https://doi.org/10.4028/www.scientific.net/MSF.846.471

    Article  Google Scholar 

  63. MacNamaraa RJ, Luptona TL, Lupoia R, Robinson AJ (2019) Enhanced nucleate pool boiling on copper-diamond textured surfaces. Appl Therm Eng 162:114145. https://doi.org/10.1016/j.applthermaleng.2019.114145

  64. Nikolic ND (2010) Fundamental aspects of copper electrodeposition in the hydrogen co-deposition range, Zaštita Materijala 51:197–203. https://cer.ihtm.bg.ac.rs/handle/123456789/725

Download references

Acknowledgements

The authors gratefully acknowledge the CIC Tripura University for providing FESEM pictures and NIT Arunachal Pradesh for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Sen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shil, B., Sen, D., Das, A.K. et al. Pool boiling performance enhancement of micro/nanoporous coated surfaces fabricated through novel hybrid method. Heat Mass Transfer 60, 47–66 (2024). https://doi.org/10.1007/s00231-023-03420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-023-03420-5

Navigation