Skip to main content
Log in

Influence of coated surfaces and gap size on boiling heat transfer of deionized water

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Nanocoating techniques have been used to increase the heat transfer coefficient by changing the surface morphology, which could potentially increase the heat transfer in pool boiling systems. The present study aims to determine the influence of nanocoated surfaces and the gap size on the heat transfer coefficient and the critical heat flux during the pool boiling of deionized water, at saturation temperature in atmospheric pressure. Tests were performed on a copper heating bare surface with an average roughness of 0.330 μm. The nanocoated surfaces were produced by alumina (Al2O3) nanoparticle deposition with 0.007% of volumetric concentration by using nanofluid boiling process. A gap size of 1.0 mm, corresponding to a Bond number equal to 0.4, was analyzed, and the results were compared with the cases without confinement. Concerning the heat transfer coefficient, the coated surface showed deterioration in the heat transfer performance (approximately 29%) as compared with the uncoated surface mainly due to the fouling resistance formed on the heating surface, confirmed by the surface characterization (SEM images). However, for coated surfaces and for confined cases, enhancement of 28% in the dryout heat flux was observed; the coating process significantly increases the surface wettability, which, in turn, increases the re-wetting capacity during the confined boiling process. Moreover, the heat transfer coefficient is more influenced by the gap size effect than the coating process. The chemical analysis showed that changes in the surface morphology occurred due to the effects of the confinement as compared to the original coated layer (the morphological aspect and melting mechanism were similar to the named liquid phase sintering).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liang G, Mudawar I (2019) Review of pool boiling enhancement by surface modification. Int J Heat Mass Transf 128:892–933

    Article  Google Scholar 

  2. Bang IC, Chang SH (2005) Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf 48:2407–2419. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047

    Article  Google Scholar 

  3. Kiyomura IS, Manetti LL, da Cunha AP, Ribatski G, Cardoso EM (2017) An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water. Int J Heat Mass Transf 106:666–674. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.051

    Article  Google Scholar 

  4. Kim J, Seongchul J, Laksnarain R, You SM (2016) Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability. Int J Heat Mass Transf 101:992–1002. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.067

    Article  Google Scholar 

  5. Kim JS, Girard A, Jun S, Lee J, You SM (2018) Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces. Int J Heat Mass Transf 118:802–811. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.124

    Article  Google Scholar 

  6. Khan SA, Atieh MA, Koç M (2018) Micro-nano scale surface coating for nucleate boiling heat transfer: a critical review. Energies 11:3189

    Article  Google Scholar 

  7. Gupta SK, Misra RD (2019) An experimental investigation on pool boiling heat transfer enhancement using Cu–Al2O3 nano-composite coating. Exp Therm Fluid Sci 32(2):133–158. https://doi.org/10.1080/08916152.2018.1485785

    Article  Google Scholar 

  8. Cao Z, Wu Z, Pham A, Yang Y, Abbood S, Falkman P, Ruzgas T, Albèr C, Sundén B (2019) Pool boiling of HFE-7200 on nanoparticle-coating surfaces: experiments and heat transfer analysis. Int J Heat Mass Transf 133:548–560. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.140

    Article  Google Scholar 

  9. Wu Z, Cao Z, Sundén B (2019) Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electro-chemical deposition. Appl Energy 249:286–299. https://doi.org/10.1016/j.apenergy.2019.04.160

    Article  Google Scholar 

  10. Ishibashi E, Nishikawa K (1969) Saturated boiling heat transfer in narrow spaces. Int J Heat Mass Transf 12:863–894

    Article  Google Scholar 

  11. Yang C-Y, Liu C-F (2013) Effect of coating layer thickness for boiling heat transfer on microporous coated surface in confined and unconfined spaces. Exp Therm Fluid Sci 47:40–47. https://doi.org/10.1016/j.expthermflusci.2013.01.001

    Article  Google Scholar 

  12. Souza RR, Passos JC, Cardoso EM (2014) Influence of nanoparticle size and gap size on nucleate boiling using HFE7100. Exp Therm Fluid Sci 59:195–201. https://doi.org/10.1016/j.expthermflusci.2013.11.001

    Article  Google Scholar 

  13. Souza RR, Cardoso EM, Passos JC (2018) Confined and unconfined nucleate boiling of HFE7100 in the presence of nanostructured surfaces. Exp Therm Fluid Sci 91:312–319. https://doi.org/10.1016/j.expthermflusci.2017.10.029

    Article  Google Scholar 

  14. Yao S-C, Chang Y (2010) Pool boiling heat transfer in a confined space. Int J Heat Mass Transf 26:841–848. https://doi.org/10.1016/s0017-9310(83)80108-2

    Article  Google Scholar 

  15. Katto Y, Yokoya S, Teraoka K (1977) Nucleate and transition boiling in a narrow space between two horizontal parallel disk-surface. Bull JSME 20(143):638–643

    Article  Google Scholar 

  16. Passos JC, Hirata FR, Possamai LFB, Balsamo M, Misale M (2004) Confined boiling of FC72 and FC87 on a downward facing heating copper disk. Int J Heat Fluid Flow 25:313–319. https://doi.org/10.1016/j.ijheatfluidflow.2003.11.016

    Article  Google Scholar 

  17. Cardoso EM, Kannengieser O, Stutz B, Passos JC (2011) FC72 and FC87 nucleate boiling inside a narrow horizontal space. Exp Therm Fluid Sci 35:1038–1045. https://doi.org/10.1016/j.expthermflusci.2011.02.006

    Article  Google Scholar 

  18. Cardoso EM, Passos JC (2013) Nucleate boiling of n-pentane in horizontal confined space. Heat Transf Eng 34:470–478. https://doi.org/10.1080/01457632.2012.722438

    Article  Google Scholar 

  19. Nolan E, Rioux R, Jiang P, Peterson GP, Li CH (2013) Experimental study of contact angle and active nucleation site distribution on nanostructure modified copper surface in pool boiling heat transfer enhancement. Heat Transf Res 44:115–131. https://doi.org/10.1615/heattransres.2012005687

    Article  Google Scholar 

  20. Matre GA, Karwande RL (2015) Critical heat flux enhancement in pool boiling with Al2O3–water nanofluid. Int J Res Eng Technol 04:177–185. https://doi.org/10.15623/ijret.2015.0405035

    Article  Google Scholar 

  21. Sarafraz MM, Kiani T, Hormozi F (2016) Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nanofluids. Int Commun Heat Mass Transf 70:75–83. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.008

    Article  Google Scholar 

  22. Mori S, Utaka Y (2017) Critical heat flux enhancement by surface modification in a saturated pool boiling: a review. Int J Heat Mass Transf 108:2534–2557

    Article  Google Scholar 

  23. Manetti LL, Mogaji TS, Beck PA, Cardoso EM (2017) Evaluation of the heat transfer enhancement during pool boiling using low concentrations of Al2O3-water based nanofluid. Exp Therm Fluid Sci 87:191–200. https://doi.org/10.1016/j.expthermflusci.2017.04.018

    Article  Google Scholar 

  24. Souza RR, Manetti LL, Kiyomura IS, Cardoso EM (2018) Liquid/surface interaction during pool boiling of DI-water on nanocoated heating surfaces. J Braz Soc Mech Sci Eng 40(11):514

    Article  Google Scholar 

  25. Tyler DE, Black WT (1995) Properties and selection: nonferrous alloys. ASM Handbook 2:759–839

    Google Scholar 

  26. Nunes JM, Manetti LL, Cardoso EM (2017) Experimental analysis of nucleate boiling on nanostructured surfaces under confined conditions. In: Proceedings of the 24th ABCM international congress of mechanical engineering COBEM2017. Curitiba, Brazil

  27. Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling of liquids. Trans ASME J Heat Transf 74:969–976

    Google Scholar 

  28. Li Y, Chen Y, Liu Z (2014) A uniform correlation for predicting pool boiling heat transfer on plane surface with surface characteristics effect. Int J Heat Mass Transf 77:809–817

    Article  Google Scholar 

  29. Stephan K (1992) Heat transfer in condensation and boiling. Springer, Berlin

    Book  Google Scholar 

  30. Vachon RI, Nix GH, Tanger GE (1968) Evaluation of constants for the Rohsenow pool-boiling correlation. ASME J Heat Transf 90:239–246. https://doi.org/10.1115/1.3597489

    Article  Google Scholar 

  31. Takata Y, Hidaka S, Cao JM, Nakamura T, Yamamoto H, Masuda M, Ito T (2005) Effect of surface wettability on boiling and evaporation. Energy 30:209–220. https://doi.org/10.1016/j.energy.2004.05.004

    Article  Google Scholar 

  32. Zuber N (1959) (Thesis), Hydrodynamic aspects of boiling heat transfer. No. AECU-4439

  33. Kiyomura IS, Mogaji TS, Manetti LL, Cardoso EM (2017) A predictive model for confined and unconfined nucleate boiling heat transfer coefficient. Appl Therm Eng 127:1274–1284. https://doi.org/10.1016/j.applthermaleng.2017.08.135

    Article  Google Scholar 

  34. Chen G, Tang Y, Wan Z, Zhong G, Tang H, Zeng J (2019) Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface-functional wicks for cooling electronics. Int Commun Heat Mass 100:12–19. https://doi.org/10.1016/j.icheatmasstransfer.2018.10.011

    Article  Google Scholar 

  35. Carey VP (1992) Liquid-vapor phase-change phenomena. Hemi-sphere/Taylor & Francis, Washington, DC

    Google Scholar 

  36. Friel JJ, Lyman CE (2006) Microscopy microanalysis X-ray mapping in electron-beam instruments. Microsc Microanal 12:2–25

    Article  Google Scholar 

  37. Callister WD Jr (2007) Materials science and engineering: an introduction, 7th edn. Wiley, Hoboken

    Google Scholar 

  38. El-Shamy TM, Pantano CG (1977) Decomposition of silicate glasses in alkaline solution. Nature 266:704–706

    Article  Google Scholar 

  39. Gin S, Jollivet P, Fournier M, Berthon C, Wang Z, Mitroshkov A, Zhu Z, Ryan JV (2015) The fate of silicon during glass corrosion under alkaline conditions: a mechanistic and kinetic study with the International Simple Glass. Geochim Cosmochim Acta 151:68–85. https://doi.org/10.1016/j.gca.2014.12.009

    Article  Google Scholar 

  40. Vashko SD, Aggen G (1995) Properties and selection: irons, steels, and high-performance alloys. ASM Handbook 1:1303–1305

    Google Scholar 

  41. Shi J, Sun B, Zhang G, Song F, Yang L (2016) Prediction of dryout and post-dryout wall temperature at different operating parameters for once-through steam generators. Int J Heat Mass Transf 103:66–76. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.027

    Article  Google Scholar 

  42. Nguyen NH, Moon SK (2015) An improved heat transfer correlation for developing post-dryout region in vertical tubes. Nucl Eng Technol 47:407–415. https://doi.org/10.1016/j.net.2015.04.004

    Article  Google Scholar 

  43. Hudelson S, Newman BK, Bernardis S, Fenning DP, Bertoni MI, Marcus MA, Fakra SC, Lai B, Buonassisi T (2010) Retrograde melting and internal liquid gettering in silicon. Adv Mater 22:3948–3953. https://doi.org/10.1002/adma.200904344

    Article  Google Scholar 

  44. Liu Z, DeVoe DL (2001) Micromechanism fabrication using silicon fusion bonding. Robot Comput Integr Manuf 17:131–137. https://doi.org/10.1016/S0736-5845(00)00046-6

    Article  Google Scholar 

  45. Hynes NRJ, Velu PS, Kumar R, Raja MK (2017) Investigate the influence of bonding temperature in transient liquid phase bonding of SiC and copper. Ceram Int 43:7762–7767. https://doi.org/10.1016/j.ceramint.2017.03.084

    Article  Google Scholar 

  46. German RM, Suri P, Park SJ (2009) Review: liquid phase sintering. J Mater Sci 44:1–39. https://doi.org/10.1007/s10853-008-3008-0

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the PPGEM – UNESP/FEIS, CAPES, CNPq (grant number 458702/2014-5), and FAPESP (grant numbers 2013/15431-7, 2014/19497-5, 2016/02034-8, and 2019/02566-8). Further thanks to Dr. Márcio de Paula for SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Maria Cardoso.

Additional information

Technical Editor: Francis HR Franca, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, J.M., Souza, R.R., Rodrigues, A.R. et al. Influence of coated surfaces and gap size on boiling heat transfer of deionized water. J Braz. Soc. Mech. Sci. Eng. 42, 127 (2020). https://doi.org/10.1007/s40430-020-2223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-2223-8

Keywords

Navigation