Skip to main content
Log in

The role of ambient gas in the electrospray cone-jet formation

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This article reports on a study into ambient gas's role in forming the electrospray cone-jet mode. The study aims to broaden the current knowledge, which is essentially confined to air as the surrounding medium in the electrospray process. This research is founded on a liquid-gas simulation, including fluid and electrostatic governing equations coupled with charge conservation and volume of fluid (VOF) interface tracking approaches. The application of various ambient gases, i.e., air, oxygen, nitrogen, methane, helium, and hydrogen, has a decisive impact on the cone-jet structure concerning geometrical profiles, which are mainly reflected in the dimensions of the whole cone-jet and the cone alone. The results indicated the altering effects of the ambient gas on equipotential configuration and charge density magnitudes. The flow patterns clarified the role of the gas type in streamlining and vortex creation within the fluid phases. Two validation tests were also performed to compare the simulation results with the experimental charged jet formation and the electrical variation of droplet mean diameter. The results displayed a good agreement supporting the aptness of the model developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and materials

The data generated or analyzed during this study are included in the manuscript.

Abbreviations

C :

Volume fraction

Ca :

Capillary number

D 32 :

Sauter mean diameter (μm)

d i,e :

Emitter inner diameter (mm)

d i,o :

Emitter outer diameter (mm)

\(\overrightarrow{E}\) :

Electric field vector (Vm1)

E 0 :

Radial electric field (Vm1)

\({\overrightarrow{F}}_{\mathrm{ES}}\) :

Electric force vector (Nm3)

\({\overrightarrow{F}}_{\mathrm{ST}}\) :

Surface tension force vector (Nm3)

\(\overrightarrow{g}\) :

Gravity acceleration (ms2)

\(\overline{\overline{I}}\) :

Identity tensor

I:

Electric Current (nA)

\(\overrightarrow{J}\) :

Electric charge flux (Cm2 s1)

K :

Electrical conductivity (Sm1)

l :

Characteristic length (m)

L :

Length, height (m)

\(\overrightarrow{n}\) :

Normal vector

P :

Pressure (Pa)

Q :

Flow rate (mLh1)

r:

Radial coordinate, radius (mm)

Re :

Reynolds number

R disk :

Disk radius (mm)

t :

Time (s)

\({\overline{\overline{T}}}_{e}\) :

Maxwell stress tensor

t e :

Electric relaxation time (s)

t m :

Magnetic characteristic time (s)

\(\overrightarrow{u}\) :

Velocity vector (ms-1)

z :

Axial coordinate (mm)

α :

Angle (deg)

γ :

Surface tension coefficient (Nm1)

ε :

Permittivity (CV1 m1)

ε 0 :

Vacuum permittivity (CV1 m1)

ε r :

Relative permittivity

κ :

Interface curvature (m)

μ :

Viscosity (mPa·s)

μ m :

Magnetic permeability (Hm1)

ρ :

Density (kgm3)

ρ e :

Volume electric charge density (Cm3)

Φ:

Electric potential (V)

χ :

Taylor number

c :

Cone

c – j :

Cone-jet surface

e :

Emitter

ed :

Emitter to disk

g :

Gas

j :

Jet

l :

Liquid

min :

Minimum

on :

Onset

References

  1. Rosell-Llompart J, Grifoll J, Loscertales IG (2018) Electrosprays in the cone-jet mode: from Taylor cone formation to spray development. J Aerosol Sci 125:2–31

    Article  Google Scholar 

  2. Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev 3(2):69–91

    Article  Google Scholar 

  3. Zeleny J (1915) On the conditions of instability of electrified drops, with applications to the electrical discharge from liquid points. In Proceedings of Cambridge Philosophical Society 18:71–83

    Google Scholar 

  4. Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10(1):1–6

    Article  Google Scholar 

  5. Taylor G (1964) Disintegration of water drops in an electric field. Proc R Soc London Ser A Math Phys Sci 280(1382):383–397

    MATH  Google Scholar 

  6. Cloupeau M, Prunet-Foch B (1990) Electrostatic spraying of liquids: main functioning modes. J Electrostat 25(2):165–184

    Article  Google Scholar 

  7. De La Mora JF, Loscertales IG (1994) The current emitted by highly conducting Taylor cones. J Fluid Mech 260:155–184

    Article  Google Scholar 

  8. Gañán-Calvo AM, Davila J, Barrero A (1997) Current and droplet size in the electrospraying of liquids. Scaling laws. J Aerosol Sci 28(2):249–275

    Article  Google Scholar 

  9. Jaworek A, Krupa A (1999) Classification of the modes of EHD spraying. J Aerosol Sci 30(7):873–893

    Article  Google Scholar 

  10. Jahannama MR, Watkins AP (2005) Electrostatic effects on agricultural air-atomized sprays and deposition. Part II: a computational study. At Sprays 15(6):629–660

    Google Scholar 

  11. Chen DR, Wendt CH, Pui DY (2000) A novel approach for introducing bio-materials into cells. J Nanopart Res 2(2):133–139

    Article  Google Scholar 

  12. Fenn JB (2003) Electrospray wings for molecular elephants (Nobel lecture). Angew Chem Int Ed 42(33):3871–3894

    Article  Google Scholar 

  13. Salata OV (2005) Tools of nanotechnology: electrospray. Curr Nanosci 1(1):25–33

    Article  Google Scholar 

  14. Radacsi N, Ambrus R, Szunyogh T, Szabó-Révész P, Stankiewicz A, Van Der Heijden A, Ter Horst JH (2012) Electrospray crystallization for nanosized pharmaceuticals with improved properties. Cryst Growth Des 12(7):3514–3520

    Article  Google Scholar 

  15. Ghelich R, Mehdinavaz Aghdam R, Jahannama MR (2018) Elevated temperature resistance of SiC-carbon/phenolic nanocomposites reinforced with zirconium diboride nanofibers. J Compos Mater 52(9):1239–1251

    Article  Google Scholar 

  16. Duong AD, Ruan G, Mahajan K, Winter JO, Wyslouzil BE (2014) Scalable, semicontinuous production of micelles encapsulating nanoparticles via electrospray. Langmuir 30(14):3939–3948

    Article  Google Scholar 

  17. Zhao XY, Wang X, Lim SL, Qi D, Wang R, Gao Z, Mi B, Chen ZK, Huang W, Deng W (2014) Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system. Sol Energy Mater Sol Cells 121:119–125

    Article  Google Scholar 

  18. De La Mora JF (2007) The fluid dynamics of Taylor cones. Annu Rev Fluid Mech 39:217–243

    Article  MathSciNet  MATH  Google Scholar 

  19. Cloupeau M, Prunet-Foch B (1989) Electrostatic spraying of liquids in cone-jet mode. J Electrostat 22(2):135–159

    Article  Google Scholar 

  20. De La Mora JF, Navascues J, Fernandez F, Rosell-Llompart J (1990) Generation of submicron monodisperse aerosols in electrosprays. J Aerosol Sci 21:S673–S676

    Article  Google Scholar 

  21. Gañán-Calvo AM, Lasheras JC, Dávila J, Barrero A (1994) The electrostatic spray emitted from an electrified conical meniscus. J Aerosol Sci 25(6):1121–1142

    Article  Google Scholar 

  22. Gañán-Calvo AM (1997) Cone-jet analytical extension of Taylor’s electrostatic solution and the asymptotic universal scaling laws in electrospraying. Phys Rev Lett 79(2):217–220

    Article  Google Scholar 

  23. Gañán-Calvo AM (1999) The surface charge in electrospraying: its nature and its universal scaling laws. J Aerosol Sci 30(7):863–872

    Article  Google Scholar 

  24. Gañán-Calvo AM (2008) Unconditional jetting. Phys Rev E 78(2):026304

    Article  MathSciNet  Google Scholar 

  25. Gañán-Calvo AM, Montanero JM (2009) Revision of capillary cone-jet physics: Electrospray and flow focusing. Phys Rev E 79(6):066305

    Article  Google Scholar 

  26. López-Herrera JM, Gañán-Calvo AM, Herrada MA (2010) Absolute to convective instability transition in charged liquid jets. Phys Fluids 22(6):062002

    Article  MATH  Google Scholar 

  27. Joffre GH, Cloupeau M (1986) Characteristic forms of electrified menisci emitting charges. J Electrostat 18(2):147–161

    Article  Google Scholar 

  28. Pelekasis NA, Tsamopoulos JA, Manolis GD (1990) Equilibrium shapes and stability of charged and conducting drops. Phys Fluids A 2(8):1328–1340

    Article  MathSciNet  MATH  Google Scholar 

  29. Wohlhuter FK, Basaran OA (1992) Shapes and stability of pendant and sessile dielectric drops in an electric field. J Fluid Mech 235:481–510

    Article  MATH  Google Scholar 

  30. Ramos A, Castellanos A (1993) Bifurcation diagrams of axisymmetric liquid bridges of arbitrary volume in electric and gravitational axial fields. J Fluid Mech 249:207–225

    Article  MathSciNet  MATH  Google Scholar 

  31. Pantano C, Gañán-Calvo AM, Barrero A (1994) Zeroth-order, electrohydrostatic solution for electrospraying in cone-jet mode. J Aerosol Sci 25(6):1065–1077

    Article  Google Scholar 

  32. Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B (1999) Electrohydrodynamic atomization in the cone–jet mode physical modeling of the liquid cone and jet. J Aerosol Sci 30(7):823–849

    Article  Google Scholar 

  33. Carretero J, Martínez-Sánchez M (2004) Numerical simulation of a colloidal thruster in the droplet regime. Comput Phys Commun 164(1–3):202–208

    Article  Google Scholar 

  34. Zeng J, Sobek D, Korsmeyer T (2003) Electro-hydrodynamic modeling of electrospray ionization: CAD for a µfluidic device-mass spectrometer interface, vol 2. Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference on IEEE, pp 1275–1278

    Google Scholar 

  35. Sen AK, Darabi J, Knapp DR, Liu J (2006) Modeling and characterization of a carbon fiber emitter for electrospray ionization. J Micromech Microeng 16(3):620–630

    Article  Google Scholar 

  36. Sen AK, Darabi J, Knapp DR (2007) Simulation and parametric study of a novel multi-spray emitter for ESI–MS applications. Microfluid Nanofluid 3(3):283–298

    Article  Google Scholar 

  37. Lastow O, Balachandran W (2006) Numerical simulation of electrohydrodynamic (EHD) atomization. J Electrostat 64(12):850–859

    Article  Google Scholar 

  38. Pooyan S, Passandideh-Fard M (2012) On a numerical model for free surface flows of a conductive liquid under an electrostatic field. J Fluids Eng 134(9):091205

    Article  Google Scholar 

  39. Rahmanpour M, Ebrahimi R, Pourrajabian A (2017) Numerical simulation of two-phase electrohydrodynamic of stable Taylor cone–jet using a volume-of-fluid approach. J Braz Soc Mech Sci Eng 39(11):4443–4453

    Article  Google Scholar 

  40. Jones JM, Moeller TM, Costa L, Canfield BK, Terekhov A (2020) Numerical investigation of the effects of geometry and materials on the onset voltage of electrospray emitters. J Electrostat 108:103487

    Article  Google Scholar 

  41. Krpoun R, Shea HR (2008) A method to determine the onset voltage of single and arrays of electrospray emitters. J Appl Phys 104(6):064511

    Article  Google Scholar 

  42. Guan Y, Wu S, Wang M, Tian Y, Yu C, Lai W, Huang Y (2022) Numerical investigation of high-frequency pulsating electrohydrodynamic jet at low electric Bond numbers. Phys Fluids 34(1):012001

    Article  Google Scholar 

  43. Huh H, Wirz RE (2022) Electrohydrodynamic simulation of electrospray thruster extraction. AIAA SCITECH 2022 Forum, p 1359

    Google Scholar 

  44. Subbotin AV, Semenov AN (2018) Micro-cones on a liquid interface in high electric field: Ionization effects. Phys Fluids 30(2):022108

    Article  Google Scholar 

  45. Rubio M, Sadek SH, Gañán-Calvo AM, Montanero JM (2021) Diameter and charge of the first droplet emitted in electrospray. Phys Fluids 33(3):032002

    Article  Google Scholar 

  46. Smith DP (1986) The electrohydrodynamic atomization of liquids. IEEE Trans Ind Appl 3:527–535

    Article  Google Scholar 

  47. Tang K, Gomez A (1995) Generation of monodisperse water droplets from electrosprays in a corona-assisted cone-jet mode. J Colloid Interface Sci 175(2):326–332

    Article  Google Scholar 

  48. López-Herrera JM, Popinet S, Herrada MA (2011) A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J Comput Phys 230(5):1939–1955

    Article  MathSciNet  MATH  Google Scholar 

  49. Herrada MA, López-Herrera JM, Gañán-Calvo AM, Vega EJ, Montanero JM, Popinet S (2012) Numerical simulation of electrospray in the cone-jet mode. Phys Rev E 86(2):026305

    Article  Google Scholar 

  50. Xu Q, Qin H, Yin Z, Hua J, Pack DW, Wang CH (2013) Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres. Chem Eng Sci 104:330–346

    Article  Google Scholar 

  51. Panahi A, Pishevar AR, Tavakoli MR (2020) Experimental investigation of electrohydrodynamic modes in electrospraying of viscoelastic polymeric solutions. Phys Fluids 32(1):012116

    Article  Google Scholar 

  52. Dastourani H, Jahannama MR, Eslami-Majd A (2018) A physical insight into electrospray process in cone-jet mode: Role of operating parameters. Int J Heat Fluid Flow 70:315–335

    Article  Google Scholar 

  53. Dastourani H, Jahannama MR, Eslami-Majd A (2021) Effects of surrounding pressure on cone–jet formation in electrospray process. Microfluid Nanofluid 25(2):13

    Article  Google Scholar 

  54. Rudman M (1997) Volume-tracking methods for interfacial flow calculations. Int J Numer Meth Fluids 24(7):671–691

    Article  MathSciNet  MATH  Google Scholar 

  55. Pilliod-Jr JE, Puckett EG (2004) Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J Comput Phys 199(2):465–502

    Article  MathSciNet  MATH  Google Scholar 

  56. Huang M, Wu L, Chen B (2012) A piecewise linear interface-capturing volume-of-fluid method based on unstructured grids. Numer Heat Transf B Fundam 61(5):412–437

    Google Scholar 

  57. Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118(2):269–277

    Article  MathSciNet  MATH  Google Scholar 

  58. Enright D, Fedkiw R, Ferziger J, Mitchell I (2002) A hybrid particle level set method for improved interface capturing. J Comput Phys 183(1):83–116

    Article  MathSciNet  MATH  Google Scholar 

  59. Olsson E, Kreiss G (2005) A conservative level set method for two phase flow. J Comput Phys 210(1):225–246

    Article  MathSciNet  MATH  Google Scholar 

  60. Jacqmin D (1999) Calculation of two-phase Navier-Stokes flows using phase-field modeling. J Comput Phys 155(1):96–127

    Article  MathSciNet  MATH  Google Scholar 

  61. Takada N, Misawa M, Tomiyama A (2005) A phase-field method for interface-tracking simulation of two-phase flows, vol 41995. Fluids Engineering Division Summer Meeting, pp 259–264

    MATH  Google Scholar 

  62. Chiu PH, Lin YT (2011) A conservative phase field method for solving incompressible two-phase flows. J Comput Phys 230(1):185–204

    Article  MathSciNet  MATH  Google Scholar 

  63. Rusche H (2003) Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Imperial College, London, UK (Ph.D. thesis)

    Google Scholar 

  64. Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J Comput Phys 152(2):423–456

    Article  MATH  Google Scholar 

  65. Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch SW, Delgado A (2007) Two-phase electrohydrodynamic simulations using a volume-of-fluid approach. J Comput Phys 227(2):1267–1285

    Article  MathSciNet  MATH  Google Scholar 

  66. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    Article  MathSciNet  MATH  Google Scholar 

  67. Openfoam. Openfoam software. http://www.openfoam.org. Accessed 14 Oct 2022

  68. Raees F, Van der Heul DR, Vuik C (2011) Evaluation of the interface-capturing algorithm of OpenFoam for the simulation of incompressible immiscible two-phase flow. Delft University of Technology, Delft, the Netherlands

    Google Scholar 

  69. Deshpande SS, Anumolu L, Trujillo MF (2012) Evaluating the performance of the two-phase flow solver interFoam. Comput Sci Discov 5(1):014016

    Article  Google Scholar 

  70. Klostermann J, Schaake K, Schwarze R (2013) Numerical simulation of a single rising bubble by VOF with surface compression. Int J Numer Meth Fluids 71(8):960–982

    Article  MathSciNet  MATH  Google Scholar 

  71. Emad V (2014) Evaluating the performance of various convection schemes on free surface flows by using interfoam solver. Eastern Mediterranean University, Famagusta, Turkey (Ph.D thesis)

    Google Scholar 

  72. Tang K, Gomez A (1996) Monodisperse electrosprays of low electric conductivity liquids in the cone-jet mode. J Colloid Interface Sci 184(2):500–511

    Article  Google Scholar 

  73. Wolfke M, Keesom WH (1936) On the electrical resistance of liquid helium. Physica 3(8):823–824

    Article  Google Scholar 

  74. Reno GJ, Katz DL (1943) Surface tension of n-heptane and n-butane containing dissolved nitrogen. Ind Eng Chem 35(10):1091–1093

    Article  Google Scholar 

  75. Dunn AF (1964) The dielectric constants of argon, carbon dioxide, nitrogen, and oxygen determined at an audio frequency. Can J Phys 42(8):1489–1498

    Article  Google Scholar 

  76. Trengove RD, Wakeham WA (1987) The viscosity of carbon dioxide, methane, and sulfur hexafluoride in the limit of zero density. J Phys Chem Ref Data 16(2):175–187

    Article  Google Scholar 

  77. Jaworek A, Krupa A (1999) Jet and drops formation in electrohydrodynamic spraying of liquids. A systematic approach. Exp Fluids 27(1):43–52

    Article  Google Scholar 

  78. Nellis WJ, Hamilton DC, Mitchell AC (2001) Electrical conductivities of methane, benzene, and polybutene shock compressed to 60 GPa (600 kbar). J Chem Phys 115(2):1015–1019

    Article  Google Scholar 

  79. Tang K, Gomez A (1994) On the structure of an electrostatic spray of monodisperse droplets. Phys Fluids 6(7):2317–2332

    Article  Google Scholar 

  80. Jahannama MR, Watkins AP, Yule AJ (2005) Electrostatic effects on agricultural air-atomized sprays and deposition. Part I: an experimental study. At Sprays 15(6):603–628

    Google Scholar 

  81. Barrero A, Gañán-Calvo AM, Davila J, Palacios A, Gomez-Gonzalez E (1999) The role of the electrical conductivity and viscosity on the motions inside Taylor cones. J Electrostat 47(1–2):13–26

    Article  Google Scholar 

  82. Wu X, Oleschuk RD, Cann NM (2012) Characterization of microstructured fibre emitters: in pursuit of improved nano-electrospray ionization performance. Analyst 137(18):4150–4161

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The authors’ contributions to this work are defined as follow: H. Dastourani contributed in conceptualization, investigation, methodology, software, and writing - review & editing. M.R. Jahannama contributed in conceptualization, investigation, methodology, supervision, and writing - review & editing. A. Eslami-Majd contributed in conceptualization, investigation, and methodology. All authors approved the final manuscript.

Corresponding author

Correspondence to M. R. Jahannama.

Ethics declarations

Ethical approval

This study does not involve human participants and/or animals that are relevant to the content of this manuscript.

Competing interests

The authors have no competing interests to declare that are applicable to the content of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastourani, H., Jahannama, M.R. & Eslami-Majd, A. The role of ambient gas in the electrospray cone-jet formation. Heat Mass Transfer 59, 2267–2284 (2023). https://doi.org/10.1007/s00231-023-03404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-023-03404-5

Navigation