Skip to main content
Log in

Comparative experimental studies of flow boiling heat transfer phenomena in smooth and enhanced tubes using R407C

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study investigates flow boiling heat transfer and pressure drop characteristics of R407C (zeotropic mixture) in newly shaped copper-made horizontal enhanced and smooth evaporator tubes of 1000 mm employing a vapour compression refrigeration cycle at ambient pressure and saturation temperatures of 15 – 45 °C. The enhanced tube has 60 trapezoidal microfins with a helix angle of 20° and a height of 0.22 mm leading to a 1.83 times increase in surface area. The effects of mass fluxes of 50–250 kg/m2s, and heat fluxes of 10—80 kW/m2 on the heat transfer coefficient (HTC) and pressure drop, were examined. 1.55, and 1.35 times higher mean HTCs, and pressure drops are recorded for the enhanced tubes with ± 9% and ± 14.5% mean absolute errors respectively with the established correlations including smooth tube findings. The results emphasize the importance of using accurate and validated correlations in refrigeration systems. Local Nusselt number variation with Jakob subcooling number and locations over the evaporator and parametric variation studies are also incorporated to analyse and capture the experimental trends comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All experimental data are given in the figures in the Results and Discussions section.

Abbreviations

\(c_{p}\) :

Specific heat capacity, kJ/kgK

\(D_{o}\) :

Outer diameter, mm

\(D_{i}\) :

Inner diameter, mm

\(G\),\(MF\) :

Mass velocity, kg/m2s

\(g\) :

Gravitational acceleration, m/s2

\(h\), \(HTC\) :

Heat transfer coefficient, kW/m2K

\(h_{fg}\) :

Enthalpy of vaporization, kJ/kg

\(I\) :

Current, amp

\(Ja_{sub}\) :

Subcooled Jacob number

\(k\) :

Thermal conductivity, kW/m.K

\(L\) :

Tube length, mm

\(L_{c}\) :

Characteristic length, mm

\(\dot{m}\) :

Mass flow rate, kg/s

\(MAE\) :

Mean absolute error

\(Nu\) :

Nusselt number

\(P\) :

Pressure, kPa

\(Q_{p}\) :

Power supplied, kW/m2

\(q\), \(HF\) :

Heat flux, kW/m2

\(R\) :

Desired variable

\(T\) :

Temperature, K

\(U_{R}\) :

Estimated uncertainty

\(U_{{V_{i} }}\) :

Individual uncertainty

\(V\) :

Voltage, V

\(x\),\(VQ\) :

Vapour quality

\(Z\) :

Axial direction, mm

\(\alpha\) :

Void fraction

\(\alpha_{a}\) :

Apex angle

\(\beta\) :

Helix angle

\(\rho\) :

Density, kg/m3

\(\sigma\) :

Surface tension, N/m

\(\mu\) :

Dynamic viscosity, kg/m.s

\(\eta\) :

Efficiency index

\(acc\) :

Acceleration

\(avg\) :

Average

\(cal\) :

Calculated

\(corr\) :

Correlation

\(\exp\) :

Experimental

\(ev\) :

Evaporator

\(frict\) :

Frictional

\(i\) :

Inlet

\(l\) :

Liquid

\(mf\) :

Microfin

\(o\) :

Outlet

\(r\) :

Refrigerant

\(s\) :

Smooth

\(sur\) :

Surface

\(sat\) :

Saturation

\(sub\) :

Subcooled

\(v\) :

Vapour

\(w\) :

Water

References

  1. Ramanathan V (1975) Greenhouse Effect Due to Chlorofluorocarbons: Climatic Implications. Am Assoc Adv Sci 190:50–52. https://www.jstor.org/stable/1740877

  2. The Copenhagen Amendment (1992) The amendment to the Montreal Protocol agreed by the Fourth Meeting of the Parties. http://ozone.unep.org

  3. Wuebbles DJ (1994) The Role of Refrigerants in Climate Change. Int J Refrig 17(1):7–17. https://doi.org/10.1016/0140-7007(94)90082-5

    Article  Google Scholar 

  4. Calm JM, Didion DA (1998) Trade-Offs in Refrigerant Selections:Past, Present, and Future. Int J Refrig 21(4):308–321. https://doi.org/10.1016/S0140-7007(97)00089-3

    Article  Google Scholar 

  5. Cavallini A, Del Col D, Doretti L, Longo GA, Rosetto L (1999) Refrigerant vaporisation inside enhanced tubes: A heat transfer model. Heat Tech 17(2):29–36

    Google Scholar 

  6. Brutin D, Ajaev V, Tadrist L (2004) Pressure drop and heat transfer analysis of flow boiling in a minichannel: influence of the inlet condition on two phase flow stability. Int J Heat Mass Transf 47(10):2365–2377. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.007

    Article  Google Scholar 

  7. Pamitran AS, Choi K-I, Oh JT, Hrnjak P (2010) Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes. Int J Refrig 33:578–588. https://doi.org/10.1016/j.ijrefrig.2009.12.009

    Article  Google Scholar 

  8. Cavallini A, Del Col D, Rossetto L (2013) Heat transfer and pressure drop of natural refrigerants in minichannels (low charge equipment). Int J Refrig 36:287–300. https://doi.org/10.1016/j.ijrefrig.2012.11.005

    Article  Google Scholar 

  9. Brutin D, Ajaev V, Tadrist L (2013) Pressure drop and void fraction during flow boiling in rectangular minichannels in weightlessness. Appl Therm Eng 51:1317–1327. https://doi.org/10.1016/j.applthermaleng.2012.11.017

    Article  Google Scholar 

  10. Piasecka M (2015) Impact of selected parameters on refrigerant flow boiling heat transfer and pressure drop in minichannels. Int J Refrig 56:198–212. https://doi.org/10.1016/j.ijrefrig.2015.03.024

    Article  Google Scholar 

  11. Andrzejczyk R, Muszynski T, Dorao CA (2017) Experimental investigations on adiabatic frictional pressure drops of R134a during flow in 5 mm diameter channel. Exp Therm Fluid Sci 83:78–87. https://doi.org/10.1016/j.expthermflusci.2016.12.016

    Article  Google Scholar 

  12. Xu Y, Fang X, Li D, Li G, Yuan Y, Xu A (2016) An experimental study of flow boiling frictional pressure drop of R134a and evaluation of existing correlations. Int J Heat Mass Transf 98:150–163. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.018

    Article  Google Scholar 

  13. Greco A, Vanoli GP (2006) Experimental two-phase pressure gradients during evaporation of pure and mixed refrigerants in a smooth horizontal tube. comparison with correlations. Heat and Mass Transf 42(8):709–725. https://doi.org/10.1007/s00231-005-0020-7

  14. Passos JC, Kuser VF, Haberschill P, Lallemand M (2003) Convective boiling of R-407c inside horizontal microfin and plain tubes. Exp Therm Fluid Sci 27(6):705–713. https://doi.org/10.1016/s0894-1777(02)00308-4

    Article  Google Scholar 

  15. Torrella E, Navarro-Esbrí J, Cabello R (2006) Boiling heat-transfer coefficient variation for R407C inside horizontal tubes of a refrigerating vapour-compression plant’s shell-and-tube evaporator. Appl Energy 83(3):239–252. https://doi.org/10.1016/j.apenergy.2005.01.010

    Article  Google Scholar 

  16. Spindler K, Müller-Steinhagen H (2007) Flow boiling heat transfer of R134a and R404A in a microfin tube at low mass fluxes and low heat fluxes. Heat Mass Transf 45:967–977. https://doi.org/10.1007/s00231-007-0326-8

    Article  Google Scholar 

  17. Dang C, Haraguchi N, Hihara E (2010) Flow boiling heat transfer of carbon dioxide inside a small-sized microfin tube. Int J Refrig 33(4):655–663. https://doi.org/10.1016/j.ijrefrig.2010.01.003

    Article  Google Scholar 

  18. Chen Y, Zhang SS, Lu Y (2013) Numerical Analysis of Water Flow Boiling Characteristics within Vertical Rectangular Thin Channels. Adv Mat Res 655–657:154–157. https://doi.org/10.4028/www.scientific.net/AMR.655-657.154

    Article  Google Scholar 

  19. Kundu A, Kumar R, Gupta A (2014) Flow boiling heat transfer characteristics of R407C inside a smooth tube with different tube inclinations. Int J Refrig 45:1–12. https://doi.org/10.1016/j.ijrefrig.2014.06.009

    Article  Google Scholar 

  20. Rollmann P, Spindler K (2016) New models for heat transfer and pressure drop during flow boiling of R407C and R410A in a horizontal micro-fin tube. Int J Therm Sci 103:57–66. https://doi.org/10.1016/j.ijthermalsci.2015.11.010

    Article  Google Scholar 

  21. Celen A, Çebi A, Dalkılıç AS (2018) Investigation of flow boiling heat transfer characteristics of R134a flowing in smooth and microfin tubes. Int Commun Heat Mass Transf 93:21–33. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.006

    Article  Google Scholar 

  22. Diani A, Rossetto L (2018) Experimental analysis of refrigerants flow boiling inside small sized microfin tubes. Heat Mass Transf 54:2315–2329. https://doi.org/10.1007/s00231-017-2111-7

    Article  Google Scholar 

  23. Longo GA, Mancin S, Righetti G, Zilio C (2021) Comparative analysis of microfin vs smooth tubes in R32 and R410A boiling. Int J Refrig 131:515–525. https://doi.org/10.1016/j.ijrefrig.2021.06.005

    Article  Google Scholar 

  24. Arcasi A, Mauro A, Napoli G, Viscito L (2022) Heat transfer coefficient, pressure drop and dry-out vapor quality of R454C. Flow boiling experiments and assessment of methods. Int J Heat Mass Transf 188: 122599. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122599

  25. Deb S, Mahesh K P, Das M, Das DC, Pal S, Das R, Das AK (2023) Flow boiling heat transfer characteristics over horizontal smooth and microfin tubes: An empirical investigation utilizing R407c. Int J Therm Sci 188: 108239. https://doi.org/10.1016/j.ijthermalsci.2023.108239

  26. Deb S, Das M, Das DC, Pal S, Das R, Das AK (2023) Evaluation of flow boiling heat transfer in horizontal circular trapezoidal-shaped microfin tube, Heat Mass Transf (Accepted).

  27. Yubing W, Li J, Zhang D, Chen W, Zhu G (2023) Investigation of the flow boiling performance in mini channel with micro pin fin. Heat Mass Transf. https://doi.org/10.1007/s00231-023-03353-z

    Article  Google Scholar 

  28. Kazerooni RB, Bakhtiarpour MA, Noghrehabadi A (2022) Experimental study of flow boiling heat transfer in horizontal rifled tube. Heat Mass Transf 59:477–487. https://doi.org/10.1007/s00231-022-03252-9

    Article  Google Scholar 

  29. Xia Y, Yu J, Suulker D, Wang HS (2023) Flow boiling heat transfer of zeotropic mixture refrigerants R454B and R449A in a smooth horizontal tube. Int J Refrig. https://doi.org/10.1016/j.ijrefrig.2023.01.019

    Article  Google Scholar 

  30. Wan Z, Hu X, Wang X, He Z (2023) Experimental Study on the Boiling/Condensation Heat Transfer Performance of a Finned Tube with a Hydrophilic/Hydrophobic Surface. Appl Therm Eng 120494. https://doi.org/10.1016/j.applthermaleng.2023.120494

  31. Das DC, Ghosh K, Sanyal D (2021) Scale analysis for water jet impingement over a horizontal flat plate under film boiling configuration. Heat Mass Transf 57:1211–1221. https://doi.org/10.1007/s00231-021-03024-x

  32. Longo GA, Mancin S, Righetti G, Zilio C (2020) Flow boiling heat transfer capabilities of R134a low GWP substitutes inside a 4 mm id horizontal smooth tube: R600a and R152a. Heat Mass Transf 56:3273–3287. https://doi.org/10.1007/s00231-020-02991-x

    Article  Google Scholar 

  33. Kumar A, Das DC, Das P (2022) Significance of surface morphology of materials on flow boiling heat transfer using R-407c. Mater Today: Proc 62:3122–3128. https://doi.org/10.1016/j.matpr.2022.03.394

    Article  Google Scholar 

  34. Kumar A, Das DC, Das P (2023) Parametric variation studies of experimental flow boiling heat transfer phenomena using R407c inside an enhanced tube. Heat Mass Transf. https://doi.org/10.1007/s00231-023-03343-1

    Article  Google Scholar 

  35. National Institute of Standards and Technology (NIST) (1998) REFPROP–Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures, Standard Reference Database 23-Version 6.0, USA

  36. Steiner D (1993) Heat transfer to boiling saturated liquids, in: Verein Deutscher Ingenieure (Ed.), VDI-Warmeatlas (VDI Heat Atlas), VDI-Gessellschaft Verfahrenstechnik und Chemie-ingenieurwesen (GCV), Translator: J.W. Fullarton, Dusseldorf. https://doi.org/10.1007/978-3-540-77877-6

  37. Zivi SM (1964) Estimation of steady-state steam void-fraction by mean of the principle of minimum entropy production. Trans ASME J Heat Transfer 86:247–251. https://doi.org/10.1115/1.3687113

    Article  Google Scholar 

  38. Schultz RR, Cole R (1979) Uncertainty analysis in boiling nucleation. AIChE Symp 75(189):32–38

    Google Scholar 

  39. Gungor KE, Winterton RHS (1986) A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transf 29:351–358. https://doi.org/10.1016/0017-9310(86)90205-x

    Article  MATH  Google Scholar 

  40. Kenning DBR, Cooper MG (1989) Saturated flow boiling of water in vertical tubes. Int J Heat Mass Transf 32(3):445–458. https://doi.org/10.1016/0017-9310(89)90132-4

    Article  Google Scholar 

  41. Wongsangam J, Nualboonrueng T, Wongwises S (2004) Performance of smooth and micro-fin tubes in high mass flux region of R-134a during evaporation. Heat Mass Transf 40(6):425–435. https://doi.org/10.1007/s00231-002-0397-5

  42. Cavallini A, Censi G, Col DD, Doretti L, Longo GA, Rossetto L (2002) Condensation of Halogenated Refrigerants Inside Smooth Tubes. HVAC&R Research 8(4):429–451. https://doi.org/10.1080/10789669.2002.10391299

    Article  Google Scholar 

  43. Chen Y, Yang KS, Chang YJ, Wang CC (2001) Two-phase pressure drop of air–water and R-410A in small horizontal tubes. Int J Multiphase Flow 27(7):1293–1299. https://doi.org/10.1016/S0301-9322(01)00004-0

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge ‘Flow Boiling Lab’, NIT Agartala, India for providing the facility to conduct the experimental study.

Author information

Authors and Affiliations

Authors

Contributions

Amit Kumar—conceptualization, experiment, writing-original draft, writing review; Sandipan Deb – assisting experimental work; Dipak Chandra Das – conceptualization, supervision, writing, review & editing; Pritam Das—supervision & editing.

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Deb, S., Das, D.C. et al. Comparative experimental studies of flow boiling heat transfer phenomena in smooth and enhanced tubes using R407C. Heat Mass Transfer 59, 1987–2003 (2023). https://doi.org/10.1007/s00231-023-03379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-023-03379-3

Navigation