Skip to main content
Log in

Investigation of performance in a cylindrical trapped vortex combustor with swirler

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Trapped vortex combustor has been widely used in many aero-engines due to its ability to achieve low emission and low total pressure loss. The swirler also has a wide application since it can produce the effects of stabilizing the combustion. However, the numerical study regarding the combination of them has not been well investigated. In the current work, the availability of using the swirler on the trapped vortex combustor is numerically studied and the superiority is verified. Besides, the effects of the position of the combustor cavity and the swirl number are studied. The results indicate that the flow field of the proposed combustor can be stable in a wide inlet velocity range and the combustion efficiency can be remarkably improved. Then, the outlet temperature distribution gets more uniform and the total pressure loss can keep in an acceptable range. Also, the NOx emission is lower when operating in a high-speed working condition. In addition, the optimum position of the cavity is determined, which is that the distance between the inlet and the cavity is 10 mm. Finally, it is found that the swirl number mainly affects the flow field and temperature distribution. Therefore, a blade installation angle of 45° should be a reasonable value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

Abbreviations

c :

Mass fraction of the species (%)

c p :

Specific heat at constant pressure (J/(kg·K)

CFD :

Computational fluid dynamics

CH 4 :

Methane

D :

Diffusion coefficient (m2/s)

D 1 :

Swirler inner diameter (m)

D 2 :

Swirler outer diameter (m)

D 3 :

Cavity diameter (m)

D 4 :

Combustion chamber diameter (m)

E :

Energy density (J/m3)

Hf :

Height (m)

k :

Turbulent kinetic energy (J)

K :

Thermal conductivity (W/(m·K))

L 1 :

Swirler length (m)

L 2 :

Combustion chamber length (m)

L 3 :

Distance between swirler and cavity (m)

L 4 :

Cavity length (m)

N-S :

Navier-Stokes

p :

Static pressure (Pa)

P 1 * :

Total pressure at the inlet (Pa)

P 2 * :

Total pressure at the outlet (Pa)

S :

Swirl number

S T :

Viscous dissipation

T :

Temperature (K)

TVC :

Trapped vortex combustor

u :

Velocity components in the x direction (m/s)

v :

Velocity components in the y direction (m/s)

Y in :

CH4 mass fraction at the inlet (%)

Y out :

CH4 mass fraction at the outlet (%)

β :

Angle between axial direction and vane (°)

δ * :

Total pressure loss (%)

ε :

Turbulent dissipation rate (%)

η :

Combustion efficiency (%)

ρ :

Density of gas mixture (kg/m3)

τ :

Stress tensor (N/m2)

\(\dot{\omega_k}\)  :

Chemical reaction rate (kg/(m3·s))

References

  1. Borisov I, Khalatov A et al (2022) The biomass fueled micro-scale CHP unit with stirling engine and two-stage vortex combustion chamber. Heat Mass Transfer 58:1091–1103. https://doi.org/10.1007/s00231-021-03165-z

    Article  Google Scholar 

  2. Kumar P, Mishra D (2012) Numerical investigation of the flow and flame structure in an axisymmetric trapped vortex combustor. Fuel 102:78–84. https://doi.org/10.1016/j.fuel.2012.06.056

    Article  Google Scholar 

  3. Ping J, He X (2020) Ignition characteristics of a novel mixed-flow trapped vortex combustor for turboshaft engine. Fuel 261:116430. https://doi.org/10.1016/j.fuel.2019.116430

    Article  Google Scholar 

  4. Zhu Z, Huang Y et al (2021) Combustion performance in a cavity-based combustor under subatmospheric pressure. Fuel 302:121115. https://doi.org/10.1016/j.fuel.2021.121115

    Article  Google Scholar 

  5. Singhal A, Ravikrishna R (2011) Single cavity trapped vortex combustor dynamics – Part-2: Simulations. Int J Spray Combust Dyn 3:45–62. https://doi.org/10.1260/1756-8277.3.1.45

    Article  Google Scholar 

  6. Fei X, Wang P, Shuai Z et al (2012) Experiment and simulation study on lean blow-out of trapped vortex combustor with various aspect ratios. Aerosp Sci Technol 18:48–55. https://doi.org/10.1016/j.ast.2011.03.010

    Article  Google Scholar 

  7. Ghenai C, Zbeeb K, Janajreh I (2013) Combustion of alternative fuels in vortex trapped combustor. Energy Convers Manag 65:819–828. https://doi.org/10.1016/j.enconman.2012.03.012

    Article  Google Scholar 

  8. Wang Z, Zeng Z, Kai L et al (2015) Effect of structure parameters of the flow guide vane on cold flow characteristics in trapped vortex combustor. J Hydrodyn 27:730–737. https://doi.org/10.1016/S1001-6058(15)60535-2

    Article  Google Scholar 

  9. Jin Y, Li Y, He X et al (2014) Experimental investigations on flow field and combustion characteristics of a model trapped vortex combustor. Appl Energy 134:257–269. https://doi.org/10.1016/j.apenergy.2014.08.029

    Article  Google Scholar 

  10. Zhang R, Fan W, Qiang S et al (2014) Structural design and performance experiment of a single vortex combustor with single-cavity and air blast atomizers. Aerosp Sci Technol 39:95–108. https://doi.org/10.1016/j.ast.2014.08.017

    Article  Google Scholar 

  11. Zhang R, Fan W, Shi Q et al (2014) Combustion and emissions characteristics of dual-channel double-vortex combustion for gas turbine engines. Appl Energy 130:314–325. https://doi.org/10.1016/j.apenergy.2014.05.059

    Article  Google Scholar 

  12. Zeng Z, Ren J, Liu X et al (2015) The unsteady turbulence flow of cold and combustion case in different trapped vortex combustor. Appl Therm Eng 90:722–732. https://doi.org/10.1016/j.applthermaleng.2015.07.041

    Article  Google Scholar 

  13. Jiang B, Jin Y, Liu D et al (2016) Effects of multi-orifice configurations of the quench plate on mixing characteristics of the quench zone in an RQL-TVC model. Exp Therm Fluid Sci 83:57–68. https://doi.org/10.1016/j.expthermflusci.2016.12.011

    Article  Google Scholar 

  14. Li M, He X, Zhao Y et al (2017) Dome structure effects on combustion performance of a trapped vortex combustor. Appl Energy 208:72–82. https://doi.org/10.1016/j.apenergy.2017.10.029

    Article  Google Scholar 

  15. Zhang R, Hao F, Fan W (2018) Combustion and stability characteristics of ultra-compact combustor using cavity for gas turbines. Appl Energy 225:940–954. https://doi.org/10.1016/j.apenergy.2018.05.084

    Article  Google Scholar 

  16. Chen S, Zhao D (2018) Numerical study of guide vane effects on reacting flow characteristics in a trapped vortex combustor. Combust Sci Technol 190:2111–2133. https://doi.org/10.1080/00102202.2018.1492568

    Article  Google Scholar 

  17. Zhao Y, He X, Xiao J et al (2020) Effect of cavity-air injection mode on the performance of a trapped vortex combustor. Aerosp Sci Technol 106:106083. https://doi.org/10.1016/j.ast.2020.106183

    Article  Google Scholar 

  18. Sharifzadeh R, Afshari A (2020) Numerical investigation of flow field effects on fuel-air mixing in a non-reacting trapped vortex combustor with different injection arrangements. Eur J Mech B-Fluid 82:106–122. https://doi.org/10.1016/j.euromechflu.2020.03.005

    Article  MathSciNet  MATH  Google Scholar 

  19. Khalil A, Gupta A (2011) Distributed swirl combustion for gas turbine application. Appl Energy 88:4898–4907. https://doi.org/10.1016/j.apenergy.2011.06.051

    Article  Google Scholar 

  20. Khalil A, Arghode V, Gupta A et al (2012) Low calorific value fuelled distributed combustion with swirl for gas turbine applications. Appl Energy 98:69–78. https://doi.org/10.1016/j.apenergy.2012.02.074

    Article  Google Scholar 

  21. Khalil A, Gupta A (2013) Fuel flexible distributed combustion for efficient and clean gas turbine engines. Appl Energy 109:267–274. https://doi.org/10.1016/j.apenergy.2013.04.052

    Article  Google Scholar 

  22. Kim M, Yoon J, Park S et al (2013) Effects of unstable flame structure and recirculation zones in a swirl-stabilized dump combustor. Appl Therm Eng 58:125–135. https://doi.org/10.1016/j.applthermaleng.2013.04.019

    Article  Google Scholar 

  23. Zhang R, Xu Q, Fan W (2018) Effect of swirl field on the fuel concentration distribution and combustion characteristics in gas turbine combustor with cavity. Energy 162:83–98. https://doi.org/10.1016/j.energy.2018.07.170

    Article  Google Scholar 

  24. Runyon J, Marsh R, Bowen P et al (2018) Lean methane flame stability in a premixed generic swirl burner: Isothermal flow and atmospheric combustion characterization. Exp Therm Fluid Sci 92:125–140. https://doi.org/10.1016/j.expthermflusci.2017.11.019

    Article  Google Scholar 

  25. Yang X, He Z, Niu Q et al (2019) Numerical analysis of turbulence radiation interaction effect on radiative heat transfer in a swirling oxyfuel furnace. Int J Heat Mass Transfer 141:1227–1237. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.060

    Article  Google Scholar 

  26. Yang X, He Z, Cha S et al (2020) Parametric analysis on the combustion and thermal performance of a swirl micro-combustor for micro thermophotovoltaic system. Energy 198:117312. https://doi.org/10.1016/j.energy.2020.117312

    Article  Google Scholar 

  27. Bazooyar B, Darabkhani H (2020) Design, manufacture and test of a micro-turbine renewable energy combustor. Energy Convers Manag 213:112782. https://doi.org/10.1016/j.enconman.2020.112782

    Article  Google Scholar 

  28. Yang X, Yang W, Dong S et al (2020) Flame stability analysis of premixed hydrogen/air mixtures in a swirl micro-combustor. Energy 209:118495. https://doi.org/10.1016/j.energy.2020.118495

    Article  Google Scholar 

  29. Fan B, Pan J, Yang W et al (2017) Numerical investigation of the effect of injection strategy on mixture formation and combustion process in a port injection natural gas rotary engine. Energy Convers Manag 133:511–523. https://doi.org/10.1016/j.enconman.2016.10.070

    Article  Google Scholar 

  30. Xie J, Zhu Y (2019) Characteristics study on a modified advanced vortex combustor. Energy 193:116805. https://doi.org/10.1016/j.energy.2019.116805

    Article  Google Scholar 

  31. Mucci A, Kholi F, Sibilli T et al (2021) Numerical analysis of secondary airflow in a rotating cavity of a gas-turbine at high operating points with vortex reducer implementation. Heat Mass Transfer 57:1363–1378. https://doi.org/10.1007/s00231-021-03029-6

    Article  Google Scholar 

  32. Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust Sci 27:431–481. https://doi.org/10.1016/S0360-1285(00)00022-8

    Article  Google Scholar 

  33. Tangermann E, Pfitzner M (2008) Numerical investigation of flame flashback into swirling flow. Asme Turbo Expo: Power Land, Sea, Air. https://doi.org/10.1115/GT2008-51081

  34. Tangermann E, Pfitzner M (2009) Evaluation of combustion models for combustion-induced vortex breakdown. J Turbul 10(10). https://doi.org/10.1080/14685240802592423

  35. Hsu K, Goss L, Roquemore W (1998) Characteristics of a trapped-vortex combustor. J Propuls Power 14:57–65. https://doi.org/10.2514/2.5266

    Article  Google Scholar 

  36. Guo Y, He X, Gong C et al (2022) Performance of a novel swirling-flow single trapped vortex combustor. Aerosp Sci Technol 127:107674. https://doi.org/10.1016/j.ast.2022.107674

    Article  Google Scholar 

  37. Zhang Y, Li J, Xie J (2022) Effects of lateral cooling hole configuration on a swirl-stabilized combustor. Energy 259:125002. https://doi.org/10.1016/j.energy.2022.125002

    Article  Google Scholar 

Download references

Acknowledgements

The authors did not receive support from any organization for the submitted work. In addition, Jin Xie asked his girlfriend to marry him in [37], and the answer from Ms. Yan Huang is: “Yes, I will”. Best wishes for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Xie.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, B., Zhang, Y. & Xie, J. Investigation of performance in a cylindrical trapped vortex combustor with swirler. Heat Mass Transfer 59, 1121–1137 (2023). https://doi.org/10.1007/s00231-022-03319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03319-7

Navigation