Skip to main content
Log in

Correlations to estimate electrical conductivity, thermal conductivity and viscosity of cobalt nanofluid

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Nanofluid is a better substitute for traditional energy transmission media due to its increased thermal conductivity. Nanofluids present a hitch for researchers in this area due to their lack of long-term uniformity. To improve the homogeneity of the nanofluids, a remarkable mix ratio of Glycerol (G) and Water (W) is determined as the base liquid. Cobalt (Co) nanofluid with a maximum volume concentration of 0.24 per cent (2% weight) was produced with the selected G/W mixture ratio. The Co nanofluid remained homogeneous during the 50-day observation period. The repeated Zeta potential and electrical conductivity tests revealed the nanofluid’s unvarying homogeneity during the observed duration. Following the observation time, SEM images also confirmed the homogeneity of Co dispersions. The viscosity and thermal conductivity of nanofluid dispersions are investigated experimentally. A typical thermal conductivity and viscosity enrichment of 19.8% and 16.3% are obtained at 0.24% concentration. Similarly, the augmentation in electrical conductivity was 340 times greater than the base fluid at 0.24% concentration. Within a 10% deviation, empirical correlations are generated for estimating the Viscosity, Electrical and Thermal Conductivities of Co Nanofluids. The heat transfer merit analysis and homogeneity tests on Co dispersions suggest that the chosen G/W blend ratio is an excellent medium for producing stable nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

C:

Specific heat, J/kgK

Co:

Cobalt

d:

Diameter

k:

Thermal conductivity, W/mK

Pr:

Prandtl number

T:

Temperature, 0C

T1 :

Temparature

T:

Time, s

w:

Weight of nanoparticles

α:

Thermal diffusivity, m2/s

ϕ:

Volume concentration of Nanoparticle

µ:

Base fluid Viscosity, cp

ρ:

Nanofluid density, kg/m3

γ:

Shear rate, s1

τ:

Shear stress, Pa

σ:

Electrical Conductivity, mS/cm

υ Br :

Browninan velocity, m/s

bf:

Basefluid

nf:

Nanofluid

p:

Nanoparticle

R:

Relative

BF:

Basefluid

EG:

Ethylene glycol

G:

Glycerol

GON:

Graphene Oxide Nanosheets

NP:

Nanoparticle

FESEM:

Field Emission Scanning Electron Microscope

W:

Water

References

  1. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids. J Heat Transfer 125:567–574. https://doi.org/10.1115/1.1571080

  2. Li CH, Peterson GP (2007) Mixing effect on enhancing the effective thermal conductivity of nanoparticle suspensions (nanofluids). Int J of Heat and Mass Transfer 50:4668–4677. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.015

    Article  MATH  Google Scholar 

  3. Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S, Afrand M (2018) A comprehensive review on the rheological behavior of mono and hybrid nanofluids: Effective parameters and predictive correlations. Int J Heat Mass Transf 127:997–1012. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.103

    Article  Google Scholar 

  4. Koca HD, Doganay S, Turgut A, Tavman IH, Saidur R, Mahbubul IM (2018) Effect of particle size on the viscosity of nanofluids: A review. Renew Sustain Energy Rev 82:1664–1674. https://doi.org/10.1016/j.rser.2017.07.016

  5. Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochim Acta 469:98–103. https://doi.org/10.1016/j.tca.2008.01.008

    Article  Google Scholar 

  6. Hemmat Esfe M, Saedodin S, Wongwises S, Toghraie D (2015) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluid. J Therm Anal Calorim 119:1817. https://doi.org/10.1007/s10973-014-4328-8

  7. Ghosh MM, Ghosh S, Pabi SK (2012) On Synthesis of a Highly Effective and Stable Silver Nanofluid Inspired by Its Multiscale Modelling. Nanosci Nanotechnol Lett 4:1–6. https://doi.org/10.1166/nnl.2012.1392

  8. Paul G, Pal T, Manna I (2010) Thermophysical property measurement of nano-gold dispersed water-based nanofluids prepared by chemical precipitation technique. J Colloid Interface Sci 349:434–437. https://doi.org/10.1016/j.jcis.2010.05.086

    Article  Google Scholar 

  9. Kim HJ, Bang IC, Onoe J (2009) Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids. Opt Lasers Eng 47:532–538. https://doi.org/10.1016/j.optlaseng.2008.10.011

  10. Shalkevich N, Escher W, Burgi T, Michel B, Si-Ahmed L, Poulikakos D (2010) On the Thermal Conductivity of Gold Nanoparticle Colloids. Langmuir 26(2):663–670. https://doi.org/10.1021/la9022757

    Article  Google Scholar 

  11. Sarojini KK, Manoj SV, Singh PK, Pradeep T, Das SK (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf A Physicochem Eng Asp 417:39– 46. https://doi.org/10.1016/j.colsurfa.2012.10.010

  12. Konakanchi H, Vajjha R, Misra D, Das D (2011) Electrical Conductivity Measurements of Nanofluids and Development of New Correlations. J Nanosci Nanotechnol 11:1–8. https://doi.org/10.1166/jnn.2011.4217

    Article  Google Scholar 

  13. Fan Yu, Chen Y, Liang X, Xu J, Lee C, Liang Q, Tao P, Deng T (2017) JialeXu, Chiahsun Lee, Qi Liang, PengTao and Tao Deng, Dispersion stability of thermal nanofluids. Prog Nat Sci 27(5):531–542. https://doi.org/10.1016/j.pnsc.2017.08.010

    Article  Google Scholar 

  14. Pagliaro M (2017) Glycerol: The Renewable Platform Chemical. Elsevier Publications, Amsterdam, The Netherlands

    Book  Google Scholar 

  15. Akilu S, Baheta AT, Minea AA, Sharma KV (2017) Rheology and thermal conductivity of non-porous silica (SiO2) in viscous glycerol and ethylene glycol-based nanofluids. Int Commun Heat Mass Transf 88:245–253. https://doi.org/10.1016/j.icheatmasstransfer.2017.08.001

  16. Akilu S, Sharma KV, Aklilu TB, Azman MM, Bhaskoro PT (2016) Temperature-Dependent Properties of Silicon Carbide Nanofluid in Binary Mixtures of Glycerol-Ethylene Glycol. Procedia Eng 148:774–778. https://doi.org/10.1016/j.proeng.2016.06.555

  17. Tshimanga N, Sharifpur M, Meyer JP (2016) Experimental investigation and model development for thermal conductivity of glycerol MgO nanofluids. Heat Transfer Eng 37(18):1538–1553. https://doi.org/10.1080/01457632.2016.1151297

    Article  Google Scholar 

  18. Ijam A, Moradi Golsheikh A, Saidur R, Ganesan P (2014) A glycerol–water-based nanofluid containing graphene oxide nanosheets. J Mater Sci 49(17):5934–5944. https://doi.org/10.1007/s10853-014-8312-2

  19. Sharifpur M, Tshimanga N, Meyer JP, Manca O (2017) Experimental investigation and model development for thermal conductivity of α-Al2O3-glycerol nanofluids. Int Commun Heat Mass Transfer 85:12–22. https://doi.org/10.1016/j.icheatmasstransfer.2017.04.001

    Article  Google Scholar 

  20. Sharifpur M, Adio SA, Meyer JP (2015) Experimental investigation and model development for effective viscosity of Al2O3–glycerol nanofluids by using dimensional analysis and GMDH-NN methods. Int Commun Heat Mass Transfer 68:208–219. https://doi.org/10.1016/j.icheatmasstransfer.2015.09.002

  21. Abareshi M, Sajjadi SH, Zebarjad SM, Goharshadi EK (2016) Fabrication, characterization, and measurement of viscosity of α-Fe2O3-glycerol nanofluids. J Mol Liq 163:27–32. https://doi.org/10.1016/j.molliq.2011.07.007

  22. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer 11:151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  23. Moita A, Moreira A, Pereira J (2021) Nanofluids for the Next Generation Thermal Management of Electronics: A Review. Symmetry 13:1362. https://doi.org/10.3390/sym13081362

  24. Escher W, Brunschwiler T, Shalkevich N, Shalkevich A, Burgi T, Michel B, Poulikakos D (2011) On the Cooling of Electronics With Nanofluids, ASME. J Heat Transfer 133(5):051401. https://doi.org/10.1115/1.4003283

  25. Hatami N, Banari AK, Malekzadeh A, Pouranfard AR (2017) The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube. Phys Lett A 381(5):510–515. https://doi.org/10.1016/j.physleta.2016.12.017

  26. Yang L, Jianyong Xu, Kai Du, Zhang X (2017) Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol 317:348–369. https://doi.org/10.1016/j.powtec.2017.04.061

    Article  Google Scholar 

  27. Cheng NS (2008) Formula for the viscosity of the glycerol-water mixture. Ind Eng Chem Res 47:3285–3288. https://doi.org/10.1021/ie071349z

    Article  Google Scholar 

  28. Bates OK (1936) Binary Mixtures of Water and Glycerol - Thermal Conductivity of Liquids. Ind Eng Chem 28(4):494–498. https://doi.org/10.1021/ie50316a033

    Article  Google Scholar 

  29. Jamshidi N, Farhadi M, Ganji DD, Sedighi K (2012) Experimental investigation on the viscosity of nanofluids. IJE Trans B: Appl 25:201–210. https://doi.org/10.5829/idosi.ije.2012.25.03b.07

    Article  Google Scholar 

  30. Ghadimi A, Saidur R, Metselaar HS (2011) A review of nanofluid stability properties and characterization in stationary conditions. International Journal of Heat and Mass Transfer 54:4051–4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014

  31. Suseel Jai Krishnan S, Nagarajan PK (2019) Influence of stability and particle shape effects for an entropy generation based optimized selection of magnesia nanofluid for convective heat flow applications. Appl Surf Sci 489:560–575. https://doi.org/10.1016/j.apsusc.2019.06.038

  32. Choudhary R, Khurana D, Kumar A, Subudhi S (2017) Stability analysis of Al2O3/water nanofluids. J Exp Nanosci 12(1):40–151. https://doi.org/10.1080/17458080.2017.1285445

    Article  Google Scholar 

  33. Hwang Y, Lee J-K, Lee J-K, Jeong Y-M, Cheong S-i, Ahn Y-C, Kim SH (2008) Production and dispersion stability of nanoparticles in nanofluids. Powder Technol 186:145–153. https://doi.org/10.1016/j.powtec.2007.11.020

    Article  Google Scholar 

  34. Kumar MS, Vasu V, Gopal AV (2016) Thermal conductivity and rheological studies for Cu–Zn hybrid Nanofluids with various base fluids. J Taiwan Inst Chem Eng 66:321–327. https://doi.org/10.1016/j.jtice.2016.05.033

  35. David R (2003) Lide, CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, Florida

    Google Scholar 

  36. Babita, Sharma SK, Gupta SM (2016) Preparation and evaluation of stable nanofluids for heat transfer application: A review. Exp Therm Fluid Sci 79:202–212. https://doi.org/10.1016/j.expthermflusci.2016.06.029

  37. Zawrah MF, Khattab RM, Girgis LG, El Daidamony H, Abdel Aziz RE (2014) Stability and electrical conductivity of water-based Al2O3 nanofluids for different applications. HBRC J 12(3):227–234. https://doi.org/10.1016/j.hbrcj.2014.12.001

  38. Shoghl SN, Jamali J, Moraveji MK (2016) Electrical conductivity, viscosity, and density of different nanofluids: An experimental study. Exp Therm Fluid Sci 74:339–346. https://doi.org/10.1016/j.expthermflusci.2016.01.004

  39. Minea AA, Luciu RS (2012) Investigations on the electrical conductivity of stabilized water-based Al2O3 nanofluids. Microfluid Nanofluid 13(6):977–985. https://doi.org/10.1007/s10404-012-1017-4

    Article  Google Scholar 

  40. Baby TT, Ramaprabhu S (2010) Investigation of thermal and electrical conductivity of graphene-based nanofluids. J Appl Phys 108:124308. https://doi.org/10.1063/1.3516289

  41. Sadri R, Ahmadi G, Togun H, Dahari M (2014) Salim Newaz Kazi, Emad Sadeghinezhad and Nashrul Zubir, An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res Lett 9:151. https://doi.org/10.1186/1556-276X-9-151

    Article  Google Scholar 

  42. Akilu S, Baheta AT, Kadirgama K, Padmanabhan E, Sharma KV (2019) Viscosity, electrical and thermal conductivities of ethylene and propylene glycol-based β-SiC nanofluids. J Mol Liq 284:780–792. https://doi.org/10.1016/j.molliq.2019.03.159

  43. Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fundam 1:182–191. https://doi.org/10.1021/i160003a005

    Article  Google Scholar 

  44. Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117. https://doi.org/10.1017/S0022112077001062

  45. Maxwell JC (1881) Treatise on Electricity and Magnetism, seconded. Clarendon Press, Oxford, U.K.

    Google Scholar 

  46. Porgar S, Vafajoo L, Nikkam N, Vakili-Nezhaad G (2021) A comprehensive investigation in the determination of nanofluids thermophysical properties. J Indian Chem Soc 98(3):100037. https://doi.org/10.1016/j.jics.2021.100037

  47. Hemmati-Sarapardeh A, Varamesh A, Husein MM, Karan K (2018) On the evaluation of the viscosity of nanofluid systems: Modeling and data assessment. Renew Sustain Energy Rev 81(1):313–329. https://doi.org/10.1016/j.rser.2017.07.049

    Article  Google Scholar 

  48. Landau LD, Lifshitz EM (1960) The propagation of electromagnetic waves. Electron Contin Media 8:290–330

    Google Scholar 

  49. Nan C-W (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1–116. https://doi.org/10.1016/0079-6425(93)90004-5

    Article  Google Scholar 

  50. Hassani S, Saidur R, Mekhilef S, Hepbasli A (2015) A new correlation for predicting the thermal conductivity of nanofluids; using dimensional analysis. Int J Heat Mass Transf 90:121–130. https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.040

  51. Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manage 52(1):789–793. https://doi.org/10.1016/j.enconman.2010.06.072

    Article  Google Scholar 

  52. Garoosi F (2020) Presenting two new empirical models for calculating the effective dynamic viscosity and thermal conductivity of nanofluids. Powder Technol 366:788–820. https://doi.org/10.1016/j.powtec.2020.03.032

    Article  Google Scholar 

  53. Moghaddam HA, Ghafouri A, Faridi Khouzestani R (2021) Viscosity and thermal conductivity correlations for various nanofluids based on different temperature and nanoparticle diameter. J Braz Soc Mech Sci Eng 43:303. https://doi.org/10.1007/s40430-021-03017-1

  54. Udawattha DS, Narayana M, Wijayarathne UPL (2019) Predicting the effective viscosity of nanofluids based on the rheology of suspensions of solid particles. Journal of King Saud University – Science 31(3):412–426. https://doi.org/10.1016/j.jksus.2017.09.016

  55. Heyhat MM, Irannezhad A (2018) Experimental investigation on the competition between enhancement of electrical and thermal conductivities in water-based nanofluids. J Mol Liq 268:169–175. https://doi.org/10.1016/j.molliq.2018.07.022

    Article  Google Scholar 

  56. Mouromtseff I (1942) Water and forced-air cooling of vacuum tubes nonelectronic problems in electronic tubes. Proc IRE 30:190–205. https://doi.org/10.1109/JRPROC.1942.234654

    Article  Google Scholar 

  57. Azmi WH, Sharma KV, Sarma PK, Mamat R, Anuar S, Rao VD (2013) Experimental determination of turbulent forced convection heat transfer and friction factor with SiO2 nanofluid. Exp Therm Fluid Sci 51:103–111. https://doi.org/10.1016/j.expthermflusci.2013.07.006

  58. Teng TP, Hung YH, Teng TC, Mo HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30(14):2213–2218. https://doi.org/10.1016/j.applthermaleng.2010.05.036

    Article  Google Scholar 

  59. Prasad TR, Krishna KR, Sharma KV, Bhaskar CN (2022) Thermal performance of stable SiO2 nanofluids and regression correlations to estimate their thermophysical properties. J Indian Chem Soc 99(6):100461. https://doi.org/10.1016/j.jics.2022.100461

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the permission of the Center for Energy Studies, JNTUH College of Engineering, Hyderabad, to undertake experiments. The authors would like to express their gratitude to the Department of Chemistry, JNTUH for allowing us to utilize the equipment to prepare nanofluids. No financial support is received by the authors to undertake the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Rajendra Prasad.

Ethics declarations

Conflict of interests

The authors hereby declare that there are no known competing financial interests or personal connections that could have influenced the study’s conclusions. The authors did not receive support from any organization for the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, T.R., Krishna, K.R., Sharma, K.V. et al. Correlations to estimate electrical conductivity, thermal conductivity and viscosity of cobalt nanofluid. Heat Mass Transfer 59, 95–112 (2023). https://doi.org/10.1007/s00231-022-03250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03250-x

Navigation