Skip to main content
Log in

Prediction of soil thermal conductivity based on Intelligent computing model

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Thermal conductivity is a basic characteristic of the heat conduction properties of subsoil. Previous research shows that soil thermal conductivity has complex correlations with many soil physical parameters, such as dry density, water content, mineral composition and particle-size distribution. In this paper, several artificial intelligence calculation methods are used to study the soil heat conduction mechanism and establish predictive models of thermal conductivity: an artificial neural network (ANN), adaptive neural network-based fuzzy inference system (ANFIS) and support vector machine (SVM). Their modelling performance was evaluated by several metrics: correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE) and variance account for (VAF). Monte Carlo simulation was used to verify the robustness of the models, and the results of traditional empirical relationship models are used for comparison. The ANN, ANFIS and SVM models can accurately predict soil thermal conductivity, with R2 > 0.89, RMSE < 0.22 (Wm−1 K−1), MAE < 0.14 (Wm−1 K−1) and VAF > 88%. The ANN model had the best predictive accuracy, with R2 = 0.9535, RMSE = 0.1338 (Wm−1 K−1), MAE = 0.0952 (Wm−1 K−1) and VAF = 95.25%. The SVM model had similar accuracy, while that of the ANFIS model was lower. Monte Carlo simulations show that the SVM model provided the most robust predictions and that all three models were significantly better than the traditional empirical models. The SVM model is suggested as the best model for predicting soil thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

ANFIS:

Adaptive neural network-based fuzzy inference system

SVM:

Support vector machine

R 2 :

Correlation coefficient

RMSE :

Root mean square error

MAE :

Mean absolute error

VAF :

Variance account for

N 1, N 2, N k :

Input parameters

Y :

Output parameter

x max :

Maximum values

x min :

Minimum values

x :

Actual value

x norm :

Normalized value

λ dry :

Thermal conductivities of dry soil [Wm1 K1]

λ sat :

Thermal conductivities of saturated soil [Wm1 K1]

γ d :

Dry density [kgm3]

n :

Porosity [%]

λ:

Thermal conductivity [Wm1 K1]

H k :

The predicted value

w x,ji :

Weighting factor

bx,j :

Bias factor at the jth hidden node

w y,j :

Weighting factor for the jth hidden node

b y :

Bias factor in the output layer

M :

Number of parameters evaluated by the same regression process

N :

Sample number

y 0 :

Measured value

y p :

Predicted value

m :

Number of Monte Carlo iterations

S :

Actual random variable considered

K e :

Normalized thermal conductivity of the soil

S r :

Soil saturation

λ water :

Thermal conductivities of water [Wm1 K1]

λ solid :

Thermal conductivities of soil solid particles [Wm1 K1]

κ :

Empirical parameters

χ,η :

Influencing parameters of thermal conductivity of dry soil

a, b:

Parameters related to dry soil

α :

Reflects the influence of soil type on the Kersten variable

References

  1. Latifi N, Latifi S, Meehan CL, Abd Majid MZ, Tahir MM, Mohamad ET (2016) Improvement of problematic soils with biopolymer-an environmentally friendly soil stabilizer. J Mater Civ Eng 29(2):04016204. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001706

    Article  Google Scholar 

  2. Adam D, Markiewicz R (2009) Energy from earth-coupled structures, foundations, tunnels and sewers. Géotechnique 59(3):229–236. https://doi.org/10.1680/geot.2009.59.3.229

    Article  Google Scholar 

  3. Dong Y, Mccartney JS, Lu N (2015) Critical review of thermal conductivity models for unsaturated soils. Geotech Geol Eng 33(2):207–221. https://doi.org/10.1007/s10706-015-9843-2

    Article  Google Scholar 

  4. Zhang M, Bi J, Chen W, Zhang X, Lu J (2018) Evaluation of calculation models for the thermal conductivity of soils. Int Commun Heat Mass 94:14–23. https://doi.org/10.1016/j.icheatmasstransfer.2018.02.005

    Article  Google Scholar 

  5. Xu X, Zhang W, Fan C, Li G (2019) Effects of temperature, dry density and water content on the thermal conductivity of genhe silty clay. Results Phys 16:102830. https://doi.org/10.1016/j.rinp.2019.102830

    Article  Google Scholar 

  6. Lu N, Dong Y (2015) Closed-form equation for thermal conductivity of unsaturated soils at room temperature. J Geotech Geoenviron Eng 141(6):04015016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001295

    Article  Google Scholar 

  7. Kersten MS (1949) Thermal Properties of Soils. University of Minnesota Engineering Experiment Station, Minneapolis (Bulletin No. 28)

    Google Scholar 

  8. Coté J, Konrad JM (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42(2):443–458. https://doi.org/10.1139/t04-106

    Article  Google Scholar 

  9. Johansen O (1975) Thermal Conductivity of Soils. University of Trondheim, Trondheim, Norway (Ph.D. thesis)

    Google Scholar 

  10. Erzin Y, Rao BH, Singh DN (2008) Artificial neural network models for predicting soil thermal resistivity. Int J Therm Sci 47(10):1347–1358. https://doi.org/10.1016/j.ijthermalsci.2007.11.001

    Article  Google Scholar 

  11. Wang J, Zhang X, Du L (2017) A laboratory study of the correlation between the thermal conductivity and electrical resistivity of soil. J Appl Geophys 145:12–16. https://doi.org/10.1016/j.jappgeo.2017.07.009

    Article  Google Scholar 

  12. Zhang N, Zou H, Zhang L, Puppala AJ, Cai G (2020) A unified soil thermal conductivity model based on artificial neural network. Int J Therm Sci 155:106414. https://doi.org/10.1016/j.ijthermalsci.2020.106414

    Article  Google Scholar 

  13. Bi J, Zhang MY, Lai YM (2020) A generalized model for calculating the thermal conductivity of freezing soils based on soil components and frost heave. Int J Heat Mass Tran 150:119166. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119166

    Article  Google Scholar 

  14. Wang JM, He HL, Li M, Dyck M, Si B, Lv JL (2020) A review and evaluation of thermal conductivity models of saturated soils. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2020.1771315

    Article  Google Scholar 

  15. Zhang T, Cai G, Liu S, Puppala AJ (2017) Investigation on thermal characteristics and prediction models of soils. Int J Heat Mass Tran 106:1074–1086. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.084

    Article  Google Scholar 

  16. Salomone LA, Kovacs WD (1984) Thermal resistivity of soils. J Geotech Eng 110(3):375–389. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:3(375)

    Article  Google Scholar 

  17. Chen SX (2008) Thermal conductivity of sands. Heat Mass Transf 44(10):1241–1246. https://doi.org/10.1007/s00231-007-0357-1

    Article  Google Scholar 

  18. Horai KI (1971) Thermal conductivity of rock-forming minerals. J Geophys Res Atmos 76(5):1278–1308. https://doi.org/10.1029/JB076i005p01278

    Article  Google Scholar 

  19. Barry-Macaulay D, Bouazza A, Singh RM, Wang B, Ranjith PG (2013) Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Eng Geol 164:131–138. https://doi.org/10.1016/j.enggeo.2013.06.014

    Article  Google Scholar 

  20. Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. Pure Appl Geophys 160(5–6):1137–1161. https://doi.org/10.1007/PL00012565

    Article  Google Scholar 

  21. Anand J, Somerton WH, Gomaa E (1973) Predicting thermal conductivities of formations from other known properties. Soc Pet Eng J 13(5):267–272. https://doi.org/10.2118/4171-PA

    Article  Google Scholar 

  22. Brigaud F, Chapman DS, Douaran SL (1990) Estimating thermal conductivity in sedimentary basins using lithologic data and geophysical well logs. AAPG Bull 74(9):1459–1477. https://doi.org/10.1306/0c9b2501-1710-11d7-8645000102c1865d

    Article  Google Scholar 

  23. Midttomme K, Roaldset E (1998) The effect of grain size on thermal conductivity of quartz sands and silts. Petrol Geosci 4(2):165–172. https://doi.org/10.1144/petgeo.4.2.165

    Article  Google Scholar 

  24. Haigh SK (2012) Thermal conductivity of sands. Geotechnique 62(7):617–625. https://doi.org/10.1680/geot.11.P.043

    Article  Google Scholar 

  25. Mitchell JK, Soga K (2005) Fundamentals of Soil Behavior. John Wiley & Sons, New York

    Google Scholar 

  26. Fausett LV (1994) Fundamentals of neural networks: architectures, algorithms, and applications. Pearson, Prentice-Hall

    MATH  Google Scholar 

  27. Hagan MT, Demuth HB, Beale MH (2002) Neural network design. China Machine Press, Beijing

    Google Scholar 

  28. Levenberg K (1944) A method for the solution of certain problems in least squares. Q Appl Math 2(2):164–168

    Article  MathSciNet  Google Scholar 

  29. Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6:525–533. https://doi.org/10.1016/S0893-6080(05)80056-5

    Article  Google Scholar 

  30. Burden F, Winkler D (2009) Bayesian regularization of neural networks. Methods Mol Biol

  31. Orbanic P, Fajdiga M (2003) A neural network approach to describing the fretting fatigue in aluminium-steel couplings. Int J Fatigue 25(3):201–207. https://doi.org/10.1016/S0142-1123(02)00113-5

    Article  Google Scholar 

  32. Nguyen TA, Ly HB, Jaafari A, Pham TB (2020) Estimation of friction capacity of driven piles in clay using artificial neural network. Vietnam J Earth Sci 42(3):265–275. https://doi.org/10.15625/0866-7187/42/3/15182

    Article  Google Scholar 

  33. Boubou R, Emeriault F, Kastner R (2010) Artificial neural network application for the prediction of ground surface movements induced by shield tunnelling. Can Geotech J 47(11):1214–1233. https://doi.org/10.1139/T10-023

    Article  Google Scholar 

  34. Fei W, Narsilio GA, Disfani MM (2021) Predicting effective thermal conductivity in sands using an artificial neural network with multiscale microstructural parameters. Int J Heat Mass Tran 170:120997. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120997

    Article  Google Scholar 

  35. Shrestha D, Wuttke F (2020) Predicting the effective thermal conductivity of geo-materials using artificial neural networks. E3S Web Conf 205:04001. https://doi.org/10.1051/e3sconf/202020504001

    Article  Google Scholar 

  36. Rizvi ZH, Akhtar SJ, Sabeeh WT, Wuttke F (2020) Effective thermal conductivity of unsaturated soils based on deep learning algorithm. E3S Web Conf 205:04006

    Article  Google Scholar 

  37. Liu C, Hu X, Yao R, Han Y, Wang Y, He W, Fan H, Du L (2020) Assessment of Soil Thermal Conductivity Based on BPNN Optimized by Genetic Algorithm. Adv Civ Eng 2020(3):1–10. https://doi.org/10.1155/2020/6631666

    Article  Google Scholar 

  38. Rizvi Z, Zaidi H, Shoarian Sattari A, Wuttke F (2019) Effective thermal conductivity of unsaturated sand using artificial neural network (ANN) and lattice element method (LEM). Int J Therm Sci

  39. Chayjan RA, Montazer GA, Hashjin TT, Hadi M, Ghobadian B (2007) Prediction of Pistachio Thermal Conductivity Using Artificial Neural Network Approach. Int J Agric Biol 9(6):816–820. http://www.fspublishers.org

  40. Fattahi H (2016) Indirect estimation of deformation modulus of an in situ rock mass: an anfis model based on grid partitioning, fuzzy c-means clustering and subtractive clustering. Geosci J 20(5):681–690. https://doi.org/10.1007/s12303-015-0065-7

    Article  MathSciNet  Google Scholar 

  41. Vapnik V (1999) The Nature of Statistical Learning Theory, 2nd edn. Springer, New York

    MATH  Google Scholar 

  42. Bui DT, Tran AT, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13(2):361–378. https://doi.org/10.1007/s10346-015-0557-6

    Article  Google Scholar 

  43. Tarnawski VR, McCombie ML, Leong WH, Wagner B, Momose T, Schönenberger J (2012) Canadian Field Soils II Modeling of Quartz Occurrence. Int J Thermophys 33(5):843–863. https://doi.org/10.1007/s10765-012-1184-2

    Article  Google Scholar 

  44. Tarnawski VR, Momose T, Mccombie ML, Leong WH (2014) Canadian field soils iii thermal-conductivity data and modeling. Int J Thermophys 36(1):119–156. https://doi.org/10.1007/s10765-014-1793-z

    Article  Google Scholar 

  45. Tarnawski VR, Leong WH (2016) Advanced Geometric Mean Model for Predicting Thermal Conductivity of Unsaturated Soils. Int J Thermophys 37(2):18. https://doi.org/10.1007/s10765-015-2024-y

    Article  Google Scholar 

  46. Lin P, Ni P, Guo C, Mei G (2020) Mapping soil nail loads using Federal Highway Administration (FHWA) simplified models and artificial neural network technique. Can Geotech J 57(10):1453–1471. https://doi.org/10.1139/cgj-2019-0440

    Article  Google Scholar 

  47. Gokceoglu C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of the ankara agglomerates from their petrographic composition. Eng Geol 66(1–2):39–51. https://doi.org/10.1016/S0013-7952(02)00023-6

    Article  Google Scholar 

  48. Yukselen Y, Erzin Y (2008) Artificial neural networks approach for zeta potential of montmorillonite in the presence of different cations. Environ Geol 54(5):1059–1066. https://doi.org/10.1007/s00254-007-0872-x

    Article  Google Scholar 

  49. Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. https://doi.org/10.3354/cr030079

    Article  Google Scholar 

  50. Pham BT, Le LM, Le TT, Bui KTT, Prakash I (2020) Development of advanced artificial intelligence models for daily rainfall prediction. Atmos Res 237:104845. https://doi.org/10.1016/j.atmosres.2020.104845

    Article  Google Scholar 

  51. Christian Pds (2012) Stochastic Models of Uncertainties in Computational Mechanics. Amer Society of Civil Engineers, Reston, VA

    MATH  Google Scholar 

  52. Guilleminot J, Soize C (2013) Stochastic model and generator for random fields with symmetry properties: application to the mesoscopic modelling of elastic random media. Multiscale Model Sim 11:840–870. https://doi.org/10.1137/120898346

    Article  MATH  Google Scholar 

  53. De Vries DA (1963) Thermal properties of soils. In: Van Wijk WR (ed) Physics of the Plant Environment. John Wiley & Sons, New York, pp 210–235

    Google Scholar 

  54. Sass JH, Lachenbruch AH, Munroe RJ (1971) Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations. J Geophys Res 76(14):3391–3401. https://doi.org/10.1029/JB076i014p03391

    Article  Google Scholar 

  55. Lu S, Ren T, Gong Y, Horton R (2007) An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci Soc Am J 71(1):8–14. https://doi.org/10.2136/sssaj2006.0041

    Article  Google Scholar 

Download references

Funding

Majority of the work presented in this paper was funded by the National Key R&D Program of China (Gran No. 2020YFC1807200), the National Natural Science Foundation of China (Grant No. 41877231, No. 42072299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Cai.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Cai, G., Liu, X. et al. Prediction of soil thermal conductivity based on Intelligent computing model. Heat Mass Transfer 58, 1695–1708 (2022). https://doi.org/10.1007/s00231-022-03209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03209-y

Navigation