Skip to main content
Log in

A critical review on the effect of nanorefrigerant and nanolubricant on the performance of heat transfer cycles

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Nowadays, nanorefrigerants have been focused across the globe to improve the heat transfer characteristics of cooling units. Incorporating high thermal conductivity nanoparticles to the conventional refrigerants presented broad facts such as increased heat transfer coefficients, improved pool boiling inside closed cycles, enhanced COP, reduced compressor energy consumption of domestic refrigerators, and enhanced heat transfer rate during the two-phase flow of fluids. The present article focused on comprehensive experimental and numerical research reports of nanorefrigerants and nanolubricants. The heat and mass transfer and thermophysical characters such as viscous behavior, thermal conductivity, specific heat, and density have been discussed for various facts like flow condensation of fluids, evaporation, refrigerants pool boiling, and other related processes. The results showed that the volume concentration, diameter, and length of particles have a significant and crucial impact on the heat transfer rate and characteristics of pure refrigerants. Based on the available reports, it can say that the application of nanoparticles in pure refrigerants may enhance its features by about 50 – 60%. Further, the proposed correlations available in the literature for nanorefrigerants have been well discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Area (m2)

\({C}_{P}\) :

Specific heat (J/kg K)

d :

Diameter (mm)

F HT :

Nanoparticles impact factor

f :

Friction factor

Fr :

Froude number

g :

Gram

h :

Heat transfer coefficient (W/m2 K)

I :

Electric current (A)

G :

Mass flux (kg/m2 s)

\({R}_{p}\) :

Maximum roughness peak height (µm)

M :

Molecular mass (kg/k mole)

Nu :

Nusselt number

Pr :

Prandtl number

q’ :

Heat flux (kW/m2)

Re :

Raynolds number

T :

Temperature (°C)

V :

Voltage (V)

We :

Webber number

x :

Vapor quality

X tt :

Martinelli number

Δ :

Difference

λ :

Thermal conductivity (W/m K)

\(\rho\) :

Density (kg/m3)

µ :

Viscosity (Pa s)

\(\varphi\) :

Mass fraction (%

avg:

Average

cr:

Critical (thermodynamic critical point)

i:

Inlet

o:

Outlet

r:

Refrigerant

n:

Nanoparticles

nr:

Nanorefrigerant

o:

Oil

w:

Water

wall:

Wall temperature

t:

Time

sat:

Saturated

sup:

Superheated

vol:

Volume

gas:

Gaseous state

nm:

Nano meter

m:

Meter

p:

Particles

Ɩ:

Liquid

L:

Litre

Ag:

Silver

Al2O3 :

Alumina oxide

ASHRAE:

American society of heating, refrigeration and air conditioning engineers

CFC:

Chlorofluorocarbon

CFD:

Computational fluid dynamics

COF:

Coefficient of friction

COP:

Coefficient of performance

CuO:

Copper oxide

EU:

European union

F:

Friction factor

GWP:

Global warming potential

HC:

Hydrocarbon

HCFC:

Hydrochlorofluorocarbon

HFC:

Hydro fluorocarbon

HTC:

Heat transfer coefficient

HVAC:

Heat ventilation and air conditioning

K:

Kelvin

LPG:

Liquid petroleum gas

MAC:

Mobile air conditioning

MgO:

Magnesium oxide

MO:

Mineral oil

MWCNT:

Multi wall carbon nano tubes

NH3 :

Ammonia

NPs:

Nanoparticles

ODP:

Ozone depletion potential

PAG:

Poly alkylene glycol

POE:

Polyester

SAE:

Society of automotive engineers

SDBS:

Sodium dodecylbenzenesulfonate

SiO2 :

Silica oxide

TiO2 :

Titanium oxide

UV:

Ultraviolet

ZnO:

Zinc oxide

ZrO2 :

Zirconium oxide

References

  1. Oberthür S, Ott HE (1999) The Kyoto Protocol: International climate policy for the 21st century. Springer Science & Business Media

  2. Union E (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union 5:2009

    Google Scholar 

  3. Maxwell JC (1873) Electricity and Magnetism Clarendon Press. Oxford, UK

  4. Ghasemi SE, Vatani M, Hatami M, Ganji DD (2016) Analytical and numerical investigation of nanoparticle effect on peristaltic fluid flow in drug delivery systems. J Mol Liq 215:88–97

    Article  Google Scholar 

  5. Abbas MA, Bai YQ, Rashidi MM, Bhatti MM (2016) Application of drug delivery in Magnetohydrodynamics peristaltic blood flow of nanofluid in a non-uniform channel. J Mech Med Biol 16(04):1650052

    Article  Google Scholar 

  6. Molana M (2017) On the Nanofluids Application in the Automotive Radiator to Reach the Enhanced Thermal Performance: A Review. Am J Heat Mass Transf 4(4):168–187

    Google Scholar 

  7. Kakavand H, Molana M (2017) A numerical study of heat transfer characteristics of a car radiator involved nanofluids. Heat Transf - Asian Res 1–15

  8. Leong KY, Saidur R, Kazi SN, Mamun AH (2010) Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator). Appl Therm Eng 30(17):2685–2692

    Article  Google Scholar 

  9. Buongiorno J, Hu L-W, Kim SJ, Hannink R, Truong BAO, Forrest E (2008) Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues, and research gaps. Nucl Technol 162(1):80–91

    Article  Google Scholar 

  10. Buongiorno J, Hu LW, Apostolakis G, Hannink R, Lucas T, Chupin A (2009) A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors. Nucl Eng Des 239(5):941–948

    Article  Google Scholar 

  11. Nam JS, Lee P-H, Lee SW (2011) Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication. Int J Mach Tools Manuf 51(7):649–652

    Article  Google Scholar 

  12. Ahmadi H, Rashidi A, Nouralishahi A, Mohtasebi SS (2013) Preparation and thermal properties of oil-based nanofluid from multi-walled carbon nanotubes and engine oil as nano-lubricant. Int Commun Heat Mass Transf 46:142–147

    Article  Google Scholar 

  13. Molana M, Banooni S (2013) Investigation of heat transfer processes involved liquid impingement jets: A review. Brazilian J Chem Eng 30(3)

  14. Wongcharee K, Chuwattanakul V, Eiamsa-ard S (2017) Influence of CuO/water nanofluid concentration and swirling flow on jet impingement cooling. Int Commun Heat Mass Transf 88:277–283

    Article  Google Scholar 

  15. Chamkha AJ, Molana M, Rahnama A, Ghadami F (2018) On the nanofluids applications in microchannels: A comprehensive review. Powder Technol 2018

  16. Nitiapiruk P, Mahian O, Dalkilic AS, Wongwises S (2013) Performance characteristics of a microchannel heat sink using TiO2/water nanofluid and different thermophysical models. Int Commun Heat Mass Transf 47:98–104

    Article  Google Scholar 

  17. Tafarroj MM, Mahian O, Kasaeian A, Sakamatapan K, Dalkilic AS, Wongwises S (2017) Artificial neural network modeling of nanofluid flow in a microchannel heat sink using experimental data. Int Commun Heat Mass Transf 86:25–31

    Article  Google Scholar 

  18. Nguyen CT, Roy G, Gauthier C, Galanis N (2007) Heat transfer enhancement using Al 2 O 3–water nanofluid for an electronic liquid cooling system. Appl Therm Eng 27(8):1501–1506

    Article  Google Scholar 

  19. Ijam A, Saidur R (2012) Nanofluid as a coolant for electronic devices (cooling of electronic devices). Appl Therm Eng 32:76–82

    Article  Google Scholar 

  20. Wang X, He Y, Liu X, Shi L, Zhu J (2017) Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Sol Energy 157:35–46

    Article  Google Scholar 

  21. Sui D, Langåker VH, Yu Z (2017) Investigation of Thermophysical Properties of Nanofluids for Application in Geothermal Energy. Energy Procedia 105:5055–5060

    Article  Google Scholar 

  22. Nasrin R, Alim MA, Chamkha AJ (2013) Effects of physical parameters on natural convection in a solar collector filled with nanofluid. Heat Transf Res 42(1):73–88

    Article  Google Scholar 

  23. Molana M (2016) A Comprehensive Review on the Nanofluids Application in the Tubular Heat Exchangers. Am J Heat Mass Transf 3(5):352–381

    Google Scholar 

  24. Izadi S, Armaghani T, Ghasemiasl R, Chamkha AJ, Molana M (2018) A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol

  25. Parvin S, Chamkha AJ (2014) An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int Commun HeatMass Transf 54:8–17

    Article  Google Scholar 

  26. Zaraki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, De Rossi D (2015) Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol 26(3):935–946

    Article  Google Scholar 

  27. Ghasemiasl, Ramin, Taheri MA, Molana M, Raoufi N (2020) Experimental investigation of thermal performance of the graphene oxide–coated plates. Heat Transf-Asian Res 49(1):519–532

  28. Banooni S, Zarea H, Molana M (2014) Thermodynamic and Economic Optimization of Plate Fin Heat Exchangers Using the Bees Algorithm. Heat Transf – Asian Res 43(5): 427–446

  29. Sabet Sarvestany N, Farzad A, Ebrahimnia-Bajestan E, Mir M (2014) Effects of magnetic nanofluid fuel combustion on the performance and emission characteristics. J Dispers Sci Technol 35(12): 1745–1750

  30. Basu S, Miglani A (2016) Combustion and heat transfer characteristics of nanofluid fuel droplets: A short review. Int J Heat Mass Transf 96:482–503

    Article  Google Scholar 

  31. Alawi OA, Sidik NAC, Kherbeet AS (2015) Nanorefrigerant effects in heat transfer performance and energy consumption reduction: A review. Int Commun Heat Mass Transfer 69:76–83

    Article  Google Scholar 

  32. Park KJ, Jung D (2007) Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energy and Buildings 39(9):1061–1064

    Article  Google Scholar 

  33. Peng H, Ding G, Jiang W, Hu H, Gao Y (2009) Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube. Int J Refrig 32(6):1259–1270

    Article  Google Scholar 

  34. Sun B, Yang D (2013) Experimental study on the heat transfer characteristics of nanorefrigerants in an internal thread copper tube. Int J Heat Mass Transf 64:559–566

    Article  Google Scholar 

  35. Mahbubul IM, Fadhilah SA, Saidur R, Leong KY, Amalina MA (2013) Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants. Int J Heat Mass Transf 57(1):100–108

    Article  Google Scholar 

  36. Majurin JA, Barthel A (2018) New Lubricants to Enable Performance, Efficiency, and Reliability. Internatl Refrig Air Condition Conf Paper 1899

  37. Diao YH, Li CZ, Zhao YH, Liu Y, Wang S (2015) Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure. Int J Heat Mass Transf 89:110–115

    Article  Google Scholar 

  38. Zendehboudi A, Wang B, Li X (2017) Robust model to predict the migration ra- tios of nanoparticles during the pool-boiling process of nanorefrigerants. Int Commun Heat Mass Transf 84:75–85

    Article  Google Scholar 

  39. Alawi OA, Sidik NAC, Kherbeet AS (2015) Nanorefrigerant effects in heat trans- fer performance and energy consumption reduction: a review. Int Commun Heat Mass Transf 69:76–83

    Article  Google Scholar 

  40. Yang L, Ji W, Zhang Z, Jin X (2019) Thermal conductivity enhancement of water by adding graphene nano-sheets: consideration of particle loading and tem- perature effects. Int. Commun. Heat Mass Transf 109:104353

  41. Yang L, Ji W, Huang J, Xu G (2019) An updated review on the influential parame- ters on thermal conductivity of nano-fluids. J Mole Liq 296: 111780

  42. Alawi OA, Sidik NAC, Mohammed HA (2014) A comprehensive review of funda- mentals, preparation and applications of nanorefrigerants. Int Commun Heat Mass Transf 54:81–95

    Article  Google Scholar 

  43. Mahbubul IM, Khaleduzzaman SS, Saidur R, Amalina MA (2014) Rheological be- havior of Al 2 O 3 /R141b nanorefrigerant. Int J Heat Mass Transf 73:118–123

    Article  Google Scholar 

  44. Paul G, Shit S, Hirani H, Kuila T, Murmu NC (2019) Tribological behavior of do- decylamine functionalized graphene nanosheets dispersed engine oil nanolubricants. Tribol Int 131:605–619

    Article  Google Scholar 

  45. Sanukrishna SS, Vishnu AS, Jose Prakash M (2017) Nanorefrigerants for energy ef- ficient refrigeration systems. J Mech Sci Technol 31: 3993–4001

  46. Sanukrishna S, Jose Prakash M (2018) Thermal and rheological characteristics of refrigerant compressor oil with alumina nanoparticles – an experimental investigation. Powder Technol 339:119–129

  47. Sanukrishna SS, Jose Prakash M (2018) Experimental studies on thermal and rhe- ological behaviour of TiO2/PAG nanolubricant for refrigeration system. Internatl J Refrig 86:356–372

  48. Minea AA, Estellé P (2018) Numerical study on CNT nanofluids behavior in laminar pipe flow. J Mole Liq 271:281–289

    Article  Google Scholar 

  49. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Mar- shall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I (2019) Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep 791: 1–59

  50. Alawi OA, Sidik NAC (2015) The effect of temperature and particles concentration on the determination of thermo and physical properties of SWCNT-nanorefrigerant. Int Commun Heat Mass Transf 67:8–13

    Article  Google Scholar 

  51. Alawi OA, Sidik NAC (2014) Mathematical correlations on factors affecting the thermal conductivity and dynamic viscosity of nanorefrigerants. Int Commun Heat Mass Transf 58:125–131

    Article  Google Scholar 

  52. Pico MDF, da Silva LRR, Schneider PS, Filho BEP (2019) Performance evaluation of diamond nanolubricants applied to a refrigeration system. Int J Refrig 100:104–112

    Article  Google Scholar 

  53. Hatami M, Domairry G, Mirzababaei SN (2017) Experimental investigation of preparing and using the H 2 O based nanofluids in the heating process of HVAC system model. Int J Hydrog Energy 42:7820–7825

    Article  Google Scholar 

  54. Lin L, Kedzierski MA (2018) Specific heat of aluminum-oxide nanolubricants. Int J Therm Sci 126

  55. Sharif MZ, Azmi WH, Redhwan AAM, Mamat R, Yusof TM (2017) Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. Int J Refrig 75:204–216

    Article  Google Scholar 

  56. Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Samykano M (2018) Exper- imental investigation on thermo-physical properties of metal oxide composite nanolubricants. Int J Refrig 89:11–21

    Article  Google Scholar 

  57. Zhou J, Luo X, Deng C, Xie M, Zhang L, Wu D, Guo F (2017) Influence of nanopar- ticle concentrations on flow boiling heat transfer coefficients of Al 2 O 3 /R141b in micro heat exchanger by direct metal laser sintering. Chin J Chem Eng 25:1714–1726

    Article  Google Scholar 

  58. Azmi WH, Sharif MZ, Yusof TM, Mamat R, Redhwan AAM (2017) Po- tential of nanorefrigerant and nanolubricant on energy saving in refrigeration system –a review. Renew Sustain Energy Rev 69: 415–428

  59. Redhwan AAM, Azmi WH, Sharif MZ, Mamat R, Zawawi NNM (2017) Compara- tive study of thermo-physical properties of SiO 2 and Al 2 O 3 nanoparticles dis- persed in PAG lubricant. Appl Therm Eng 116:823–832

    Article  Google Scholar 

  60. Cheng L, Liu L (2013) Boiling and two-phase flow phenomena of refrigerant-based nanofluids: fundamentals, applications and challenges. Int J Refrig 36:421–446

    Article  Google Scholar 

  61. Peng H, Ding G, Hu H, Jiang W (2011) Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles. Int J Heat Mass Transf 54:1839–1850

    Article  Google Scholar 

  62. Naphon P, Thongkum D, Assadamongkol P (2009) Heat pipe efficiency enhance- ment with refrigerant –nanoparticles mixtures. Energy Convers Manag 50:772–776

    Article  Google Scholar 

  63. Bohdal T, Charun H, Sikora M (2011) Comparative investigations of the condensa- tion of R134a and R404A refrigerants in pipe minichannels. Int J Heat Mass Transf 54:1963–1974

    Article  Google Scholar 

  64. Lin L, Peng H, Ding G (2016) Experimental research on particle aggregation be- havior in nanorefrigerant–oil mixture. Appl Therm Eng 98:944–953

    Article  Google Scholar 

  65. Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Sharma KV (2017) Ther- mo-physical properties of Al 2 O 3 -SiO 2 /PAG composite nanolubricant for re- frigeration system. Int J Refrig 80:1–10

    Article  Google Scholar 

  66. Alawi OA, Salih JM, Mallah AR (2019) Thermo-physical properties effectiveness on the coefficient of performance of Al 2 O 3 /R141b nano-refrigerant. Int Com- mun Heat Mass Transf 103:54–61

    Article  Google Scholar 

  67. Javadi FS, Saidur R (2013) Energetic, economic and environmental impacts of using nanorefrigerant in domestic refrigerators in Malaysia. Energy Convers Manag 73:335–339

    Article  Google Scholar 

  68. Alawi OA, Sidik NAC, Kherbeet AS (2016) The effects of nanolubricants on boiling and two phase flow phenomena: a review. Int Commun Heat Mass Transf 75:197–205

    Article  Google Scholar 

  69. Kedzierski MA, Brignoli R, Quine KT, Brown JS (2017) Density Viscosity and thermal conductivity of aluminum oxide and zinc oxide nanolubricants. Revue Int Froid 74:3–11

    Article  Google Scholar 

  70. Saidur, Rahman et al (2011) A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew Sustain Energy Rev 15(1): 310–323

  71. Celen, Ali et al (2014) A review of nanorefrigerants: flow characteristics and applications. Internatl J Refrig 44: 125–140

  72. Alawi, Omer A, Sidik NAC, Sh Kherbeet A (2015) Nanorefrigerant effects in heat transfer performance and energy consumption reduction: A review. Internatl Commun in Heat Mass Transf 69: 76–83

  73. Redhwan AAM et al (2016) Development of nanorefrigerants for various types of refrigerant based: A comprehensive review on performance. Int Commun Heat Mass Transfer 76:285–293

    Article  Google Scholar 

  74. Azmi WH et al (2017) Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–A review. Renew Sustain Energy Rev 69:415–428

    Article  Google Scholar 

  75. Yang, Liu et al (2020) A review of heating/cooling processes using nanomaterials suspended in refrigerants and lubricants. Internatl J Heat Mass Transf 153: 119611

  76. Lin L, Peng H, Chang Z, Ding G (2017) Experimental research on degradation of nanolubricant –refrigerant mixture during continuous alternation processes of condensation and evaporation. Int J Refrig 76:97–108

    Article  Google Scholar 

  77. Yang L, Ji W, Mao M, Huang JN (2020) An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects, J. Clean Prod 25: 120408

  78. Jatinder G, Ohunakin OS, Adelekan DS, Atiba OE, Daniel AB, Singh J, Atayero AA (2019) Performance of a domestic refrigerator using selected hydrocarbon working fluids and TiO2 –Mo nanolubricant. Appl Therm Eng 160:114004

  79. Yang D, Sun B, Li H, Fan X (2015) Experimental study on the heat transfer and flow characteristics of nanorefrigerants inside a corrugated tube. Int J Refrigeration 56:213–223

    Article  Google Scholar 

  80. Heris SZ, Edalati Z, Noie SH, Mahian O (2014) Experimental investigation of Al2O3 /water nanofluid through equilateral triangular duct with constant wall heat flux in laminar flow. Heat Transf Eng 35:1173–1182

    Article  Google Scholar 

  81. Yang L, Mao M, Huang JN, Ji W (2019) Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol 356:335–341

    Article  Google Scholar 

  82. Yang L, Du K (2013) An optimizing method for preparing natural refrigerant: ammonia-water nanofluids. Integr Ferroelectr 147:24–33

    Article  Google Scholar 

  83. Yang L, Huang JN, Ji W, Mao M (2020) Investigations of a new combined application of nanofluids in heat recovery and air purification. Powder Technol 360:956–966

    Article  Google Scholar 

  84. Akhavan-Behabadi MA, Sadoughi MK, Darzi M, Fakoor-Pakdaman M (2015) Experimental study on heat transfer characteristics of R600a/POE/CuO nano-refrigerant flow condensation. Exp Therm Fluid Sci 66:46–52

  85. Sanukrishna SS, Vishnu AS, Jose Prakash M (2017) Nanorefrigerants for energy efficient refrigeration systems. J Mech Sci Technol 31: 3993–4001

  86. Tashtoush BM, Al-Nimr MA, Khasawneh MA (2017) Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system. Appl Energy 206:1446–1463

    Article  Google Scholar 

  87. Sun B, Yang D (2014) Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube. Int J Refrigeration 38:206–214

    Article  Google Scholar 

  88. Sheikholeslami M, Darzi M, Sadoughi MK (2018) Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experi- mental procedure. Int J Heat Mass Transf 122:643–650

    Article  Google Scholar 

  89. Sanukrishna SS, Shafi M, Murukan M, Jose Prakash M (2019) Effect of SiO2 nanoparticles on the heat transfer characteristics of refrigerant and tribologi- cal behaviour of lubricant. Powder Technol (2019)

  90. Nawi MRM, Rehim MZA, Azmi WH, Razak SA (2018) The characterization and thermo-physical property investigations of SiO2/HFE7000 nanorefrigerants. Int J Refrigeration 88:275–283

    Article  Google Scholar 

  91. Bi S, Guo K, Liu Z, Wu J (2011) Performance of a domestic refrigerator using TiO2 -R600a nano-refrigerant as working fluid. Energy Conversion Manag 52:733–737

    Article  Google Scholar 

  92. Jiang W, Li S, Yang L, Du K (2019) Experimental investigation on performance of ammonia absorption refrigeration system with TiO2 nanofluid. Int J Refrigeration 98:80–88

    Article  Google Scholar 

  93. Aktas M, Dalkilic AS, Celen A, Cebi A, Mahian O, Wongwises S (2014) A theo- retical comparative study on nanorefrigerant performance in a single-stage vapor-compression refrigeration cycle. Adv Mech Eng

  94. Mahbubul IM, Saadah A, Saidur R, Khairul MA, Kamyar A (2015) Thermal perfor- mance analysis of Al2O3/R-134a nanorefrigerant. Int J Heat Mass Transf 85:1034–1040

    Article  Google Scholar 

  95. Eid EI, Khalaf-Allah RA, Tolan M (2019) Enhancement of pool boiling characteris- tics by an addition of nano Aluminum oxide to R-141b over a rough horizon- tal steel circular heater. Int J Refrig 98:311–322

    Article  Google Scholar 

  96. Cooper (1984) Saturation nucleate pool boiling a simple correlation, in: 1st UK Natl. Heat Transfer Conf I Chem E Symp Series 86(2):785–793

  97. Hady MRA, Ahmed MS, Abdallah G (2018) Experimental investigation on the performance of chilled-water air conditioning unit using alumina nanofluids. Therm Sci Eng Progress 5:589–596

    Article  Google Scholar 

  98. Ram Krishna Upadhyay AK (2019) Boundary lubrication properties and contact mechanism of carbon-MoS2 based nanolubricants under steel-steel contact. Colloid Interface Sci Commun 31:100186

  99. Yang D, Sun B, Li H, Fan X (2015) Experimental study on the heat transfer and flow characteristics of nanorefrigerants inside a corrugated tube. Int J Refrig 56:213–223

    Article  Google Scholar 

  100. Liu Z, Winterton RHS (1991) A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int J Heat Mass Transf 34:2759

    Article  Google Scholar 

  101. Lin L (2015) Hao Peng, Guoliang Ding, Dispersion stability of multi-walled carbon nanotubes in refrigerant with addition of surfactant. Appl Therm Eng 91:163–171

    Article  Google Scholar 

  102. Kumaresan V, Velraj R, Das Sarit K (2012) Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int J Refrig 35:2287–2296.

  103. Peng H, Ding G, Hu H, Jiang W (2010) Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant –oil mixture. Int J Therm Sci 49:2428–2438

    Article  Google Scholar 

  104. Ghajar YACaAJ Heat and mass transfer, fundamentals and applications

  105. Sun B, Wang H, Yang D (2018) Effects of surface functionalization on the flow boil- ing heat transfer characteristics of MWCNT-R141b nanorefrigerants in smooth tube. Exp Therm Fluid Sci

  106. Maheshwary PB, Handa CC, Nemade KR (2018) Effect of shape on thermophysical and heat transfer properties of ZnO/R-134a nanorefrigerant. Mater Today 5:1635–1639

    Google Scholar 

  107. Peng H, Ding G, Hu H, Jiang W, Zhuang D, Wang K (2010) Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles. Int J Refrig 33:347–358

    Article  Google Scholar 

  108. Ghafurian MM, Niazmand H, Tavakoli Dastjerd F, Mahian O (2019) A study on the potential of carbon-based nanomaterials for enhancement of evaporation and water production. Chem Eng Sci 207: 79–90

  109. Eid EI, Khalaf-Allah RA, Tolan M (2019) Enhancement of pool boiling characteristics by an addition of nano Aluminum oxide to R-141b over a rough horizontal steel circular heater. Int J Refrigeration 98:311–322

    Article  Google Scholar 

  110. Chereches EI, Sharma KV, Minea AA (2018) A numerical approach in describing ionanofluids behavior in laminar and turbulent flow. Continuum Mech Thermodynamics 30:657–666

    Article  MathSciNet  MATH  Google Scholar 

  111. Helvaci HU, Khan ZA (2017) Heat transfer and entropy generation analysis of HFE 7000 based nanorefrigerants. Int J Heat Mass Transfer 104:318–327

    Article  Google Scholar 

  112. Alawia OA, Sidika NAC, Mamatb R (2015) Performance Analysis of Nanorefrigerants in Heated and Rotating Concentric And Eccentric Annulus Cylinders. J Teknol 77(8)

  113. Mahbubul IM, Fadhilah SA, Saidur R, Leong KY, Amalina MA (2013) Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants. Int J Heat Mass Transfer 57(1):100–108

    Article  Google Scholar 

  114. Peng H, Ding G, Hu H (2011) Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part II: Model development and validation. Int J Refrig 34(8):1833–1845

    Article  Google Scholar 

  115. Turgut OE (2018) Multi-Agent Metaheuristic Framework for Thermal Design Optimization of a Shell and Tube Evaporator Operated with R134a/Al2O3 R134a/Al2O3 Nanorefrigerant. Arab J Sci Eng 1–25

  116. Alawi OA, Sidik NAC (2014) Influence of particle concentration and temperature on the thermophysical properties of CuO/R134a nanorefrigerant. Int Commun Heat Mass Transf 58:79–84

    Article  Google Scholar 

  117. Zohud M, Ouadha A, Benzeguir R (2018) Numerical study of the flow of R1270-based nanorefrigerants in a circular tube subject to uniform heat flux. Micro Nano Letter 13(12):1693–1698

    Article  Google Scholar 

  118. Ajayi OO, Ibia DE, Ogbonnaya M, Attabo A, Michael A (2017) CFD analysis of nanorefrigerant through adiabatic capillary tube of vapour compression refrigeration system. Procedia Manufacturing 7:688–695

    Article  Google Scholar 

  119. Coumaressin T, Palaniradja K (2014) Performance analysis of a refrigeration system using nano fluid. Int J Adv Mech Eng 4(4):459–470

    Google Scholar 

  120. Hernández DC, Nieto-Londoño C, Zapata-Benabithe Z (2016) Analysis of working nanofluids for a refrigeration system. Dynamics 83(196):176–183

    Google Scholar 

  121. Akbari M, Galanis N, Behzadmehr A (2011) Comparative analysis of single and two phase models for CFD studies of nanofluid heat transfer. Int J Therm Sci 50(8):1343–1354

    Article  Google Scholar 

  122. Sidik NAC, Alawi OA (2014) Computational investigations on heat transfer enhancement using nanorefrigerants. J Adv Res Des 1(1):35–41

    Google Scholar 

  123. Kosmadakis G, Neofytou P (2019) Investigating the effect of nanorefrigerants on a heat pump performance and cost-effectiveness. Therm Sci Eng Prog 13:100371

  124. Bi S, Shi L, Zhang L-l (2008) Application of nanoparticles in domestic refrigerators. Appl Therm Eng 28(14–15):1834–1843

    Article  Google Scholar 

  125. Ahamed JU, Saidur R, Masjuki HH (2011) A review on exergy analysis of vapor compression refrigeration system. Renew Sustain Energy Rev 15(3):1593–1600

    Article  Google Scholar 

  126. Shengshan, Bi, Lin SHI (2007) Experimental investigation of a refrigerator with a nanorefrigerant. J Tsinghua University (Sci Technol) 11: 016

  127. Aktas M, Dalkilic AS, Celen A, Cebi A, Mahian O, Wongwises S (2015) A theoretical comparative study on nanorefrigerant performance in a single-stage vapor-compression refrigeration cycle. Adv Mech Eng 7(1), 138725

  128. Kumar R, Singh J (2017) Effect of ZnO nanoparticles in R290/R600a (50/50) based vapour compression refrigeration system added via lubricant oil on compressor suction and discharge characteristics. Heat Mass Transf 53(5):1579–1587

    Article  Google Scholar 

  129. Kumar R, Singh DK, Chander S (2020) An experimental approach to study thermal and tribology behavior of LPG refrigerant and MO lubricant appended with ZnO nanoparticles in domestic refrigeration cycle. Heat Mass Transf 56(7):2303–2311

    Article  Google Scholar 

  130. Jwo CS, Jeng LY, Teng TP, Chang H (2009) Effects of nanolubricant on performance of hydrocarbon refrigerant system. J Vac Sci Technol B: Microelectron Nanomet Struct Process Measure Phenom 27(3):1473–1477

    Article  Google Scholar 

  131. Kumar DS, Elansezhian R (2014) ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment. Front Mech Eng 9(1):75–80

    Article  Google Scholar 

  132. Subramani N, Mohan A, Prakash JM (2013) Performance studies on a vapour compression refrigeration system using nano-lubricant. Internatl Jo Innovative Res Sci, Eng Technol 2(1):522–530

    Google Scholar 

  133. Kumar R, Singh J, Kundal P (2018) Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation. Heat Mass Transf 54(5):1405–1413

    Article  Google Scholar 

  134. Senthilkumar A, Anderson A, Sekar M (2021) Performance analysis of R600a vapour compression refrigeration system using CuO/Al2O3 hybrid nanolubricants. Appl Nanosci 1–17

  135. Joshi YG, Zanwar DR, Joshi SS, Bhave NA (2021) Experimental investigation of Al2O3 nanosuspension in vapor compression refrigeration system using tetrafluoroethane and iso-butane refrigerants. Mater Today: Proc

  136. Nair V, Parekh AD, Tailor PR (2020) Experimental investigation of a vapour compression refrigeration system using R134a/Nano-oil mixture. Int J Refrig 112:21–36

    Article  Google Scholar 

  137. Sabareesh RK, Gobinath N, Sajith V, Das S, Sobhan CB (2012) Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems–An experimental investigation. Int J Refrig 35(7):1989–1996

    Article  Google Scholar 

  138. Soliman AM, Rahman AKA, Ookawara S (2019) Enhancement of vapor compression cycle performance using nanofluids. J Therm Anal Calorim 135(2):1507–1520

    Article  Google Scholar 

  139. Kundan L, Singh K (2021) Improved performance of a nanorefrigerant-based vapor compression refrigeration system: A new alternative. Proc Inst Mech Eng Part A: J Power Energy 235(1):106–123

    Article  Google Scholar 

  140. Pico DFM, da Silva LRR, Schneider PS, Bandarra Filho EP (2019) Performance evaluation of diamond nanolubricants applied to a refrigeration system. Int J Refrig 100:104–112

    Article  Google Scholar 

  141. Yıldız G, Ağbulut Ü, Gürel AE (2021) A review of stability, thermophysical properties and impact of using nanofluids on the performance of refrigeration systems. Internatl J Refrige

  142. Vamshi J, Anand KM, Sharma A, Kumar A, Kumar S, Kotia A, Choudhary R (2021) A review on the utilization of nanoparticles in the refrigeration system as nano-refrigerant and nano-lubricant. Mater Today: Proc

  143. Kaushik R, Kundan L, Sharma RK (2021) Investigating the performance of nanorefrigerant (R134a + CuO) based vapor compression cycle: a new scope. Heat Transfer Res 52(13)

  144. Yilmaz AC (2020) Performance evaluation of a refrigeration system using nanolubricant. Appl Nanosci 10:1667–1678. https://doi.org/10.1007/s13204-020-01258-5

    Article  Google Scholar 

  145. Karthick M, Karuppiah SK, Kanthan V (2020) Performance investigation and exergy analysis of vapor compression refrigeration system operated using R600a refrigerant and nanoadditive compressor oil. Therm Sci 24(5 Part A):2977–2989

  146. Sarrafzadeh Javadi F, Saidur R (2021) Thermodynamic and Energy Efficiency Analysis of a Domestic Refrigerator Using Al2O3 Nano-Refrigerant. Sustainability 13(10):5659

    Article  Google Scholar 

  147. Deokar PS, Cremaschi L (2020) Experimental investigation of two phase flow boiling heat transfer of mixtures of refrigerant R410A and nanolubricants in a horizontal smooth copper tube. Sci Technol Built Environ 26(4):449–464

    Article  Google Scholar 

  148. Choi TJ, Kim DJ, Jang SP, Park S, Ko S (2021) Effect of polyolester oil-based multiwalled carbon-nanotube nanolubricant on the coefficient of performance of refrigeration systems. Appl Therm Eng 192:116941

  149. Zarei MJ, Ansari HR, Keshavarz P, Zerafat MM (2020) Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks. J Therm Anal Calorim 139(6):3757–3768

    Article  Google Scholar 

  150. Sitprasert C, Dechaumphai P, Juntasaro V (2009) A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer. J Nanopart Res 11:1465–1476

  151. Cole R, Rosenhow W (1969) Correlation of bubble departure diameters for boiling of saturated liquids. Chem Eng Progress Symp Ser 65(92):211–213

    Google Scholar 

  152. Kern DQ (1950) Process Heat Transfer. Mc Graw-Hill, New York

    Google Scholar 

  153. Chon CH, Kihm KD Lee SP (2005) Empirical correlation finding the role of temperature and article size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87:1e3.

Download references

Acknowledgements

The authors declare no competing financial supporter for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravinder Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Singh, D.K. & Chander, S. A critical review on the effect of nanorefrigerant and nanolubricant on the performance of heat transfer cycles. Heat Mass Transfer 58, 1507–1531 (2022). https://doi.org/10.1007/s00231-022-03194-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-022-03194-2

Navigation