Skip to main content
Log in

Enhanced thermal performance of vortex generating liquid heat sink for the application of cooling high voltage direct current devices

  • Original Article
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An experimental investigation of serpentine design flow channel heat sinks has been carried out to assess their suitability for the thermal management of high voltage direct current (HVDC) devices. This study contributes to the effective cooling technique that utilizes the mixture of water (70%) and propylene glycol (30%) as a working fluid. Fluid flow and heat transfer characteristics are significantly affected by the geometrical parameters of the flow channels in heat sink which are experimentally investigated in this study. The effects of coolant flow rate and four different flow channel shapes on the heat sink performance are investigated in detail. The assessment of heat sink performance for HVDC device is based on several exclusive attributes such as temperature profile, Nusselt number, thermal resistance, pressure drop, pumping power, Colburn j-factor, and friction factor. We conclude that the flow channel with vortex generator installed heat sink shows the best performance in contrast to other types of flow channel heat sinks studied. The proposed experimental approach provides comprehensive insights into flow channel design configurations for heat sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A:

Surface area [m2]

\({c}_{p}\) :

Specific heat capacity [J/kg K]

D:

Diameter [mm]

L:

Length [mm]

\(f\) :

Friction factor

k :

Thermal conductivity [W/m K]

h :

Heat transfer coefficient [W/m2K]

\(\dot{m}\) :

Mass flow rate [kg/s]

Pr:

Prandtl number

Re:

Reynold number

Nu:

Nusselt number

Ppump :

Pumping power [W]

\({\Delta p}\) :

Pressure drop [Pa]

q:

Heat load [W]

Q:

Volumetric flow rate [m3/s]

Rth :

Thermal resistance [K/W]

T:

Temperature [K]

\({\Delta T}\) :

Temperature difference [K]

V:

Velocity [m/s

μ :

Viscosity [kg/m s]

\(\rho\) :

Density [kg/m3

In:

Inlet

Out:

Outlet

Max:

Maximum

References

  1. May TW, Yeap YM, Ukil A (2016) Comparative evaluation of power loss in HVAC and HVDC transmission systems. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, IEEE: New York, NY, USA. 637–641.

  2. Nguyen MH, Saha TK (2009) Power loss evaluations for long distance transmission lines. In Proceedings of the Australian Geothermal Energy Conference, Brisbane, Australia. 307–312

  3. Murshed SMS, Nieto de Castro C (2007) A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew Sustain Energy Rev 78:821–833. https://doi.org/10.1016/j.rser.2017.04.112

    Article  Google Scholar 

  4. Khalaj AH, Halgamuge SK (2017) A Review on efficient thermal management of air-and liquid-cooled data centers: From chip to the cooling system. Appl Energy 205:1165–1188. https://doi.org/10.1016/j.apenergy.2017.08.037

    Article  Google Scholar 

  5. Chu RC, Simons RE, Ellsworth MJ, Schmidts RR (2004) Review of cooling technologies for computer products. IEEE Trans Dev Mater Res 4:568–585. https://doi.org/10.1109/TDMR.2004.840855

    Article  Google Scholar 

  6. Hu R, Zhou S, Li Y, Lei D, Luo X, Qiu C (2018) Illusion Thermotics. Adv Mater 30:1707237. https://doi.org/10.1002/adma.201707237

    Article  Google Scholar 

  7. Luo XB, Hu R, Liu K, Wang K (2016) Heat and fluid flow in high-power LED packaging and applications. Prog Energ Combust Sci 56:1–32. https://doi.org/10.1016/j.pecs.2016.05.003

    Article  Google Scholar 

  8. Ma Y, Lan W, Xie B, Hu R, Luo X (2018) An optical-thermal model for laser-excited remote phosphor with thermal quenching. Int J Heat Mass Trans 116:694–702. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.066

    Article  Google Scholar 

  9. Sohel Murshed MS, Nieto de Castro CA (2017) A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew Sust Energy Rev 78:821–833. https://doi.org/10.1016/j.rser.2017.04.112

    Article  Google Scholar 

  10. Qian C, Gheitaghy AM, Fan J, Tang H, Sun B, Ye H, Zhang G (2018) Thermal management on IGBT power electronic devices and modules. IEEE Access 6:12868–12884. https://doi.org/10.1109/ACCESS.2018.2793300

    Article  Google Scholar 

  11. Laloya E, Lucia O, Sarnago H, Burdio JM (2016) Heat management in power converters: from state of the art to future ultrahigh efficiency systems. IEEE Trans Power Electr 31:7896–7908. https://doi.org/10.1109/TPEL.2015.2513433

    Article  Google Scholar 

  12. Xie B, Liu H, Hu R, Wang C, Hao J, Wang K, Luo X (2018) Targeting cooling for quantum dots in white QDs-LEDs by hexagonal boron nitride platelets with electrostatic bonding. Adv Funct Mater 28:1801407. https://doi.org/10.1002/adfm.201801407

    Article  Google Scholar 

  13. Schmidt R (2004) Challenges in electronic cooling-opportunities for enhanced thermal management techniques-microprocessor liquid cooled minichannel heat sink. Heat Transf Eng 25:3–12. https://doi.org/10.1080/01457630490279986

    Article  Google Scholar 

  14. Black JR (1969) Electromigration–a brief survey and some recent results. IEEE Trans Electron Dev 16:338–347. https://doi.org/10.1109/T-ED.1969.16754

    Article  Google Scholar 

  15. Yang S, Xiang D, Bryant A, Mawby P, Ran L, Tavner P (2010) Condition monitoring for device reliability in power electronic converters: a review. IEEE Trans Power Electr 25:2734–2752. https://doi.org/10.1109/TPEL.2010.2049377

    Article  Google Scholar 

  16. Weigand B, Spring S (2011) Multiple jet impingement–a review. Heat Transf Res 42:101–142. https://doi.org/10.1615/HeatTransRes.v42.i2.30

    Article  Google Scholar 

  17. Ma CF, Gan YP, Tian YC, Lei DH, Gomi T (1993) Liquid jet impingement heat transfer with or without boiling. J Therm Sci 2:32–49. https://doi.org/10.1007/BF02650835

    Article  Google Scholar 

  18. Fitzgerald JA, Garimella SV (1998) A study of the flow field of a confined and submerged impinging jet. Int J Heat Mass 41:1025–1034. https://doi.org/10.1016/S0017-9310(97)00205-6

    Article  Google Scholar 

  19. Kadam ST, Kumar R (2014) Twenty first century cooling solution: Microchannel heat sinks. Int J Therm Sci 85:73–92. https://doi.org/10.1016/j.ijthermalsci.2014.06.013

    Article  Google Scholar 

  20. Alihosseini Y, Targhi MZ, Heyhat MM, Ghorbani N (2020) Effect of a micro heat sink geometric design on thermos-hydraulic performance: A review. Appl Therm Eng 170:114974. https://doi.org/10.1016/j.applthermaleng.2020.114974

    Article  Google Scholar 

  21. Liang G, Mudawar I (2017) Review of spray cooling–Part 1: Single-phase and nucleate boiling regimes, and critical heat flux. Int J Heat Mass Trans 115:1174–1205. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.029

    Article  Google Scholar 

  22. Wu W, Bostanci H, Chow LC, Ding SJ, Hong Y, Su M, Kizito JP, Gschwender L, Snyder CE (2011) Jet impingement and spray cooling using slurry of nanoencapsulated phase change materials. Int J Heat Mass Trans 54:2715–2723. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.022

    Article  Google Scholar 

  23. Paniagua-Guerra LE, Sehgal S, Gonzalez-Valle CU, Ramos-Alvarado B (2019) Fractal channel manifolds for microjet liquid-cooled heat sinks. Int J Heat Mass Trans 138:257–266. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.039

    Article  Google Scholar 

  24. Bhunia A, Chen CL (2011) On the Scalability of Liquid Microjet Array Impingement Cooling for Large Area Systems. J Heat Transfer 133:064501. https://doi.org/10.1115/1.4003532

    Article  Google Scholar 

  25. Chang CT, Kojasoy G, Landis F, Downing S (1995) Confined single - and multiple-jet impingement heat transfer - I. Turbulent submerged liquid jets. Int J Heat Mass Trans 38:833–842. https://doi.org/10.1016/0017-9310(94)00202-7

    Article  Google Scholar 

  26. Fitzgerald JA, Garimella SV (1998) A study of the flow field of a confined and submerged impinging jet. Int J Heat Mass Trans 41:1025–1034. https://doi.org/10.1016/S0017-9310(97)00205-6

    Article  Google Scholar 

  27. Li CY, Garimella SV (2001) Prandtl-number effects and generalized correlations for confined and submerged jet impingement. Int J Heat Mass Trans 44:3471–3480. https://doi.org/10.1016/S0017-9310(01)00003-5

    Article  Google Scholar 

  28. RobinsonSchnitzler AJ (2007) An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer. Exp Thermal Fluid Sci 32:1–13. https://doi.org/10.1016/j.expthermflusci.2006.12.006

    Article  Google Scholar 

  29. Chein R, Huang G (2004) Thermoelectric cooler application in electronic cooling. Appl Therm Eng 24:2207–2217. https://doi.org/10.1016/j.applthermaleng.2004.03.001

    Article  Google Scholar 

  30. Wu R, Hong T, Cheng Q, Zou H, Fan Y, Luo X (2019) Thermal modeling and comparative analysis of jet impingement liquid cooling for high power electronics. Int J Heat Mass Trans 137:42–51. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.112

    Article  Google Scholar 

  31. Wang H, Chen Z, Gao J (2016) Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Appl Therm Eng 25:870–879. https://doi.org/10.1016/j.applthermaleng.2016.07.039

    Article  Google Scholar 

  32. Barrau J, Chemisana D, Rosell J, Tadrist L, Ibañez M (2010) An experimental study of a new hybrid jet impingement/micro-channel cooling scheme. Appl Therm Eng 30:2058–2066. https://doi.org/10.1016/j.applthermaleng.2010.05.013

    Article  Google Scholar 

  33. Ambatipudi KK, Rahman MM (2000) Analysis of conjugate heat transfer in microchannel heat sinks. Numerical Heat Transfer, Part A: Applications 37:711–731. https://doi.org/10.1080/104077800274046

    Article  Google Scholar 

  34. Cho ES, Choi JW, Yoon JS, Kim MS (2010) Modeling and simulation on the mass flow distribution in microchannel heat sinks with non-uniform heat flux conditions. Int J Heat Mass Trans 53:1341–1348. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.025

    Article  MATH  Google Scholar 

  35. Cho ES, Choi JW, Yoon JS, Kim MS (2010) Experimental study on microchannel heat sinks considering mass flow rate distribution with non-uniform heat flux conditions. Int J Heat Mass Trans 53:2159–2168. https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.026

    Article  Google Scholar 

  36. McGarry M, Campo A, Hitt DL (2004) Numerical simulations of heat and fluid flow in grooved channels with curved vanes. Numerical Heat Transfer, Part A: Applications 46:41–54. https://doi.org/10.1080/10407780490457653

    Article  Google Scholar 

  37. Herman C, Kang E (2002) Heat transfer enhancement in a grooved channel with curved vanes. Int J Heat Mass Trans 45:3741–3757. https://doi.org/10.1016/S0017-9310(02)00092-3

    Article  Google Scholar 

  38. Fischer L, Mura E, Qiao G, ONeill P, Arx SV, Li Q, Ding Y, (2021) HVDC convertor cooling system with a phase change dispersion. Fluids 6:117. https://doi.org/10.3390/fluids6030117

    Article  Google Scholar 

  39. Li Q, Fischer L, Qiao G, Mura E, Chuan Li, Ding Y (2020) High performance cooling of a HVDC converter using a fatty acid ester-based phase change dispersion in a heat sink with double-layer oblique-crossed ribs. Int J of Energy Res 44:5819–5840. https://doi.org/10.1002/er.5347

    Article  Google Scholar 

  40. Ali E, Park J, Park H (2020) Numerical investigation of enhanced heat transfer in a rectangular channel with winglets. Heat Transf Eng 42:695–705. https://doi.org/10.1080/01457632.2020.1723845

    Article  Google Scholar 

  41. Dominic A, Devahdhanush VS, Suresh S (2021) An experimental investigation on the effect of relative waviness on performance of minichannel heat sinks using water and nanofluids. Heat Mass Transf. https://doi.org/10.1007/s00231-021-03096-9

    Article  Google Scholar 

  42. Haaland SE (1983) Simple and explicit formulas for the friction factor in turbulent pipe flow. J Fluids Eng 89–90

  43. Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 6:359–368

    Google Scholar 

  44. Holman JP, Gajda WJ (1989) Experimental Methods for Engineers. McGraw-Hill. Fifth edition

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019R1A2C1002212), and also by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy (MOTIE), Republic of Korea (No. 20179310100060 and 20181110100310).

Funding

National Research Foundation of Korea, 2019R1A2C1002212, Heesung Park, Korea Institute of Energy Technology Evaluation and Planning, 20181110100310, Heesung Park, 20179310100060, Heesung Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heesung Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, E., Park, J., Choi, J. et al. Enhanced thermal performance of vortex generating liquid heat sink for the application of cooling high voltage direct current devices. Heat Mass Transfer 58, 1157–1169 (2022). https://doi.org/10.1007/s00231-021-03168-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03168-w

Navigation