Skip to main content

Advertisement

Log in

Micro-Channel Heat Sink: A Review

  • Invited Review
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The method to cool a high heat flux device is an important research direction for the heat exchanger design. Micro-channels are an effective heat exchange structure both for single-phase and two-phase flow. In this paper, the heat transfer correlations of single-phase, two-phase and nanofluid in a micro-channel are discussed and analyzed. The correlations of pressure drop for single-phase and two-phase fluids are also presented. Excluding the different working fluids used in the micro-channel, the diameter and aspect ratio, shape and structure, surface roughness, internal and external factor and layout of micro-channel pipe are considered to analyze their influence on the heat transfer performance and pressure drop. Micro-channel technology applications include industry, air-conditioning, solar energy systems, heat pipe technology and computer data center cooling. Compared to the conventional heat exchangers used in these fields, a micro-channel heat sink showed a much better heat transfer coefficient and low volume, indicating that it is a good choice and has huge potential for cooling application. Finally, existing problems and future scopes are described, and drawing up design standard, experimental and simulated methods for evaluating its performance are the urgent actions which need to be carried out. This review paper serves as guidance for researchers to design and predict the performance of micro-channel heat sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Naqiuddin N., Saw L., Yew M., et al., Overview of micro-channel design for high heat flux application. Renewable and Sustainable Energy Reviews, 2018, 82: 901–914.

    Article  Google Scholar 

  2. Yao S., Ma Z., Luo L., et al., Improvement of heat pipe technique for high heat flux electronics cooling. Journal of East China shipbuilding Institute, 2003, 17: 9–12.

    Google Scholar 

  3. Tuckerman D., Pease R., High-performance heat sinking for VLSI. IEEE Electron Device Letters, 1981, 2: 126–129.

    Article  ADS  Google Scholar 

  4. Wheatley J., Hofler T., Swift G., et al., Understanding some simple phenomena in thermo-acoustics with applications to acoustical heat engines. American Journal of Physics, 1985, 53: 147–162.

    Article  ADS  Google Scholar 

  5. Du X., Effect of compressibility and roughness on the micro-pipe flow and heat transfer. Tsinghua University, Peking, China, 2000.

    Google Scholar 

  6. Prajapati Y., Pathak M., Khan M., Transient heat transfer characteristic of segmented finned micro-channels. Experimental Thermal and Fluid Science, 2016, 79: 134–142.

    Article  Google Scholar 

  7. Khan J., Monjur M., Fang R., Towards ultra-compact high heat flux micro-channel heat sink. Procedia Engineering, 2014, 90: 11–24.

    Article  Google Scholar 

  8. Morini G., Single-phase convective heat transfer in microchannels: a review of experimental results. International Journal of Thermal Sciences, 2004, 43: 631–651.

    Article  Google Scholar 

  9. Al-Asadi M., Alkasmoul F., Wilson M., Benefits of spanwise gaps in cylindrical vortex generators for conjugate heat transfer enhancement in micro-channels. Applied Thermal Engineering, 2018, 130: 571–586.

    Article  Google Scholar 

  10. Wang L., Liu F., Forced convection in slightly curved micro-channels. International Journal of Heat and Mass Transfer, 2007, 50: 881–896.

    Article  MATH  Google Scholar 

  11. Wei X., Joshi Y., Experimental and numerical study of sidewall profile effects on flow and heat transfer inside micro-channels. International Journal of Heat and Mass Transfer, 2007, 50: 4640–4651.

    Article  MATH  Google Scholar 

  12. Tsai C., Tai C., Fu L., et al., Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems. Journal of Micromechanics and Microengineering, 2005, 15: 377–385.

    Article  ADS  Google Scholar 

  13. Aubin J., Prat L., Xuereb C., et al., Effect of microchannel aspect ratio on residence time distributions and the axial dispersion coefficient. Chemical Engineering and Processing, 2009, 48: 554–559.

    Article  Google Scholar 

  14. Ribatski G., A critical overview on the recent literature concerning flow boiling and two-phase flows inside micro-scale channels. Experimental Heat Transfer, 2013, 26: 198–246.

    Article  ADS  Google Scholar 

  15. Saisorn S., Kuaseng P., Wongwises S., Heat transfer characteristics of gas-liquid flow in horizontal rectangular micro-channels. Experimental Thermal and Fluid Science, 2014, 55: 54–61.

    Article  Google Scholar 

  16. Kim S., Madawar I., Universal approach to predicting saturated flow boiling heat transfer in mini/microchannels- part II: two-phase heat transfer coefficient. International Journal of Heat and Mass Transfer, 2013, 64: 1239–1256.

    Article  Google Scholar 

  17. Li S., Bao Y., Wang P., et al., Effect of nano-structure coating on thermal performance of thermosyphon boiling in micro-channels. International Journal of Heat and Mass Transfer, 2018, 124: 463–474.

    Article  Google Scholar 

  18. Zhang W., Zhang Z., Huang H., et al., Effect of refrigerant flow direction and throttle opening in RAC unit using micro-channel evaporator. International Journal of Refrigerant, 2016, 70: 280–288.

    Article  Google Scholar 

  19. Dai B., Li M., Ma Y., Effect of surface roughness on liquid friction and transition characteristics in micro- and mini-channels. Applied Thermal Engineering, 2014, 67: 283–293.

    Article  Google Scholar 

  20. Zhang Y., Wang S., Ding P., Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. International Journal of Heat and Mass Transfer, 2017, 113: 295–309.

    Article  Google Scholar 

  21. Ribatskia G., Cabezas-Gomezb L., Navarroa H., et al., The advantages of evaporation in micro-scale channels to cool microeletronic devices. Thermal Engineering, 2007, 6: 34–39.

    Google Scholar 

  22. Karayiannis T., Mahmoud M., Flow boiling in microchannels: Fundamentals and applications. Applied Thermal Engineering, 2017, 25: 1372–1397.

    Article  Google Scholar 

  23. Joshi L., Singh S., Kumar S., A review on enhancement of heat transfer in microchannel exchanger. International Journal of Innovative Science Engineering and Technology, 2014, 9: 529–535.

    Google Scholar 

  24. Wan Z., Deng J., Li B., Thermal performance of a miniature loop heat pipe using water-copper nanofluid. Applied Thermal Engineering, 2015, 78: 712–719.

    Article  Google Scholar 

  25. Prajapati O., Rohatgi N., Flow boiling heat transfer enhancement by using ZnO-water nanofluids. Science & Technology of Nuclear Installations, 2014, 4: 246–250.

    Google Scholar 

  26. Luo X., Guo F., Wang W., et al., Relationship between boiling chaotic characteristics of nanofluids and heat transfer enhancement in micro-channels heat exchanger. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34: 210–217.

    Google Scholar 

  27. Liang G., Mudawar I., Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. International Journal of Heat and Mass Transfer, 2019, 136: 324–s354.

    Article  Google Scholar 

  28. Kim S., Mudawar I., Review of two-phase critical flow models and investigation of the relationship between choking, premature CHF, and CHF in micro-channel heat sinks. International Journal of Heat and Mass Transfer, 2015, 87: 497–511.

    Article  Google Scholar 

  29. Sandler S., Zajaczkowski B., Krolicki Z., Review on flow boiling of refrigerants R236fa and R245fa in mini and micro channels. International Journal of Heat and Mass Transfer, 2018, 126: 591–617.

    Article  Google Scholar 

  30. Lee H., Park I., Mudawar I., et al., Micro-channel evaporator for space applications—2. Assessment of predictive tools. International Journal of Heat and Mass Transfer, 2014, 77: 1231–1249.

    Article  Google Scholar 

  31. Obot N., Toward a better understanding of friction and heat/mass transfer in micro channels-a literature review. Microscale Thermophysical Engineering, 2002, 6: 155–173.

    Article  Google Scholar 

  32. Wang X., Wang Q., Tao W., Study on flow and heat transfer characteristics of rarefied gas in micro-channel. Science China, 2003, 3: 245–250.

    Article  Google Scholar 

  33. Yuan Y., Rahman S., Extended application of lattice Boltzmann method to rarefied gas flow in micro-channels. Physica A: Statistical Mechanics and its Applications, 2016, 463: 25–36s.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Zheng G., Sun C., Li F., et al., Numerical research the heat transfer characteristics of air in circular and race track shaped micro-channels. Journal of Thermal Science and Technology, 2018, 17: 132–137.

    Google Scholar 

  35. Yang Y., Huo H., Analysis of heat transfer and flow characteristic for high temperature Helium-xenon gas microchannel regenerator. Atomic Energy Science and Technology A, 2018, 11: 1–9.

    Google Scholar 

  36. Hak M., Fluid mechanics of micro devices — the Freeman scholar lecture. Journal of Fluids Engineering, 1999, 121: 5–33.

    Article  Google Scholar 

  37. Karniadakis G., Beskok A., Aluru N., Microflows and nanoflows — fundamentals and simulation. Volume 29 of Interdisciplinary Applied Mathematics, New York, USA, 2005.

    MATH  Google Scholar 

  38. E J., Han D., Deng Y., et al., Performance enhancement of a baffle-cut heat exchanger of exhaust gas recirculation. Applied Thermal Engineering, 2018, 134: 86–94.

    Article  Google Scholar 

  39. E J., Zhang Z., Tu Z., et al., Effect analysis on flow and boiling heat transfer performance of cooling water-jacket of bearing in the gasoline engine turbocharger. Applied Thermal Engineering, 2018, 130: 754–766.

    Article  Google Scholar 

  40. Jiang M., Luo X., Liu W., Investigation of heat transfer and fluid-dynamic characteristics of water flowing through micro-channels without phase change. Journal of Beijing Union University, 1998, 12: 71–75.

    Google Scholar 

  41. Liu H., Shao Y., Chen Z., et al., Heat transfer and flow performance of a novel T type heat sink with GaInSn coolant. International Journal of Thermal Sciences, 2019, 144: 129–146.

    Article  Google Scholar 

  42. Sahar A., Ozdemir M., Fayyadh E., et al., Single phase flow pressure drop and heat transfer in rectangular metallic micro channels. Applied Thermal Engineering, 2016, 93: 1324–1336.

    Article  Google Scholar 

  43. Wu P., Little W., Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for micro miniature refrigerators. Cryogenics, 1984, 24: 415–420.

    Article  ADS  Google Scholar 

  44. Choi S., Barron R., Warrington R., Fluid flow and heat transfer in microtubes. Micromechanical Sensors, Actuators and Systems, 1991, 32: 123–134.

    Google Scholar 

  45. Yu D., Warrington R., Barron R., et al., An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. Proceedings of ASME/JSME Thermal Engineering Joint Conference, Maui, HI, 1995.

    Google Scholar 

  46. Choi S., Barron R., Choi W., Liquid flow and heat transfer in microtubes. Micromechanical Sensors, Actuators and Systems, 1991, 32: 123–134.

    Google Scholar 

  47. Yu D., Warrington R., Barron R., et al., An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. Proceedings of ASME/JSME Thermal Engineering Joint Conference, Maui, HI, 1995.

    Google Scholar 

  48. Wang B., Peng X., Experimental investigation on liquid forced convection heat transfer through micro channels. International Journal of Heat and Mass Transfer, 1994, 37: 73–82.

    Article  ADS  Google Scholar 

  49. Nguyen N., Bochnia D., Kiehnscherf R., et al., Investigation of forced convection in microfluid systems. Sensors and Actuators A, 1996, 55: 49–55.

    Article  Google Scholar 

  50. Peng X.F., Peterson G.P., Convective heat transfer and flow friction for water flow in microchannel structures. International Journal of Heat and Mass Transfer, 1996, 39: 2599–2608.

    Article  Google Scholar 

  51. Adams T., Dowling M., Abdel-Khalik S., et al., Applicability of traditional turbulent single-phase forced convection correlations to non-circular micro channels. International Journal of Heat and Mass Transfer, 1999, 42: 4411–4415.

    Article  Google Scholar 

  52. Jiang P., Fan M., Si G., et al., Thermal-hydraulic performance of small scale micro-channel and porousmedia heat-exchangers. International Journal of Heat and Mass Transfer, 2001, 44: 1039–1051.

    Article  Google Scholar 

  53. Wu H., Ping C., An experimental study of convective heat transfers in silicon micro channels with different surface conditions. International Journal of Heat and Mass Transfer, 2003, 46: 2547–2556.

    Article  Google Scholar 

  54. Kim S., Kim J., Mudawar I., Flow condensation in parallel micro-channels - part 1: experimental results and assessment of pressure drop correlations. International Journal of Heat and Mass Transfer, 2012, 55: 971–983.

    Article  MATH  Google Scholar 

  55. Wen Z., Zhou Z., Shen J., et al., Heat transfer of gas-water two-phase flow in microgap. 15th International Conference on Electronic Packaging Technology, Chengdu, China, 2014.

    Google Scholar 

  56. Serizawa A., Feng Z., Kawara Z., Two-phase flow in micro channels. Experimental Thermal and Fluid Science, 2002, 26: 703–714.

    Article  Google Scholar 

  57. Saisor S., Wongwises S., Adiabatic two-phase gas-liquid flow behaviors during upward flow in a vertical circular micro-channel. Experimental Thermal and Fluid Science, 2015, 69: 158–168.

    Article  Google Scholar 

  58. Liu Y., Wang S., Distribution of gas-liquid two-phase slug flow in parallel micro-channels with different branch spacing. International Journal of Heat and Mass Transfer, 2019, 132: 606–617.

    Article  Google Scholar 

  59. Liu Y., Sun W., Wu W., et al., Gas-liquid two-phase flow distribution in parallel micro-channels with different header and channels’ orientations. International Journal of Heat and Mass Transfer, 2017, 112: 767–778.

    Article  Google Scholar 

  60. Lim Y., Yu S., Nguyen N., Flow visualization and heat transfer characteristics of gas-liquid two-phase flow in microtube under constant heat flux at wall. International Journal of Heat and Mass Transfer, 2013, 56: 350–359.

    Article  Google Scholar 

  61. Suwankamnerd P., Wongwises S., An experimental study of two-phase air-water flow and heat transfer characteristics of segmented flow in a microchannel. Experimental Thermal and Fluid Science, 2015, 62: 29–39.

    Article  Google Scholar 

  62. Qu W., Mudawar I., Flow boiling heat transfer in two-phase micro-channel heat sinks — I. Experimental investigation and assessment of correlation methods. International Journal of Heat and Mass Transfer, 2003, 46: 2755–2771.

    Article  Google Scholar 

  63. Lee J., Mudawar I., Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: part II-heat transfer characteristics. International Journal of Heat and Mass Transfer, 2005, 48: 941–955.

    Article  Google Scholar 

  64. Shah R., London A., Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic Press, New York, USA, 1978.

    Google Scholar 

  65. Cooper M., Saturation nucleate pool boiling-a simple correlation. The Institution of Chemical Engineers Symposium Series, 1984, 86: 785–793.

    Google Scholar 

  66. Tran T., Wambsganss M., France D., Small circular-and rectangular channel boiling with two refrigerants. International Journal of Multiphase Flow, 1996, 22: 485–498.

    Article  MATH  Google Scholar 

  67. Warrier G., Dhir V., Momoda L., Heat transfer and pressure drop in narrow rectangular channels. Experimental Thermal and Fluid Science, 2002, 26: 53–64.

    Article  Google Scholar 

  68. Agostini B., Bontemps A., Vertical flow boiling of refrigerant R134a in small channels. International Journal of Heat and Fluid Flow, 2005, 26: 296–306.

    Article  Google Scholar 

  69. Li W., Wu Z., A general correlation for evaporative heat transfer in micro/mini channels. International Journal of Heat and Mass Transfer, 2010, 53: 1778–1787.

    Article  Google Scholar 

  70. Oh H., Son C., Flow boiling heat transfer and pressure drop characteristics of CO2 in horizontal tube of 4.57-mm inner diameter. Applied Thermal Engineering, 2011, 31: 163–172.

    Article  Google Scholar 

  71. Gungor K., Winterton R., A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer, 1986, 29: 351–358.

    Article  MATH  Google Scholar 

  72. Ducoulombier M., Colasson S., Bonjour J., et al., Carbon dioxide flow boiling in a single microchannel.Part II: Heat transfer. Experimental Thermal and Fluid Science, 2011, 35: 597–611.

    Article  Google Scholar 

  73. Cavallini A., Zecchin R., A dimensionless correlation for heat transfer in forced convection condensation. The 5th International Heat Transfer Conference, Tyoko, Japan, 1974.

    Google Scholar 

  74. Shah M., A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer, 1979, 22: 547–556.

    Article  Google Scholar 

  75. Dobson M., Chato J., Condensation in smooth horizontal tubes. ASME Journal of Heat Transfer, 1998, 120: 193–213.

    Article  Google Scholar 

  76. Wang W., Radcliff T., Christensen R., A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition. Experimental Thermal and Fluid Science, 2002, 26: 473–485.

    Article  Google Scholar 

  77. Koyama S., Kuwahara K., Nakashita K., et al., An experimental study on condensation of refrigerant R134a in a multi-port extruded tube. International Journal of Refrigeration, 2003, 24: 425–432.

    Article  Google Scholar 

  78. Huang X., Ding G., Hu H., et al., Influence of oil on flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes. International Journal of Refrigeration, 2010, 33: 158–169.

    Article  Google Scholar 

  79. Hetsroni G., Mosyak A., Pogrebnyak E., et al., Heat transfer of gas-liquid mixture in micro-channel heat sink. International Journal of Heat and Mass Transfer, 2009, 52: 3963–3971.

    Article  MATH  Google Scholar 

  80. Lazarek G., Black S., Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. International Journal of Heat and Mass Transfer, 1982, 25: 945–960.

    Article  Google Scholar 

  81. Lee H., Lee S., Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios. International Journal of Multiphase Flow, 2001, 27: 2043–2062.

    Article  MATH  Google Scholar 

  82. Ducoulombier M., Colasson S., Bonjour J., et al., Carbon dioxide flow boiling in a single microchannel — Part II: Heat transfer. Experimental Thermal and Fluid Science, 2011, 35: 597–611.

    Article  Google Scholar 

  83. Liu Z., Winterton R., A general correlation for saturated and subcsooled flow boiling in tubes and annuli, based on nucleate pool boiling equation. International Journal of Heat and Mass Transfer, 1991, 34: 2759–2766.

    Article  Google Scholar 

  84. Bertsch S., Groll E., Garimella S., A composite heat transfer correlation for saturated flow boiling in small channels. International Journal of Heat and Mass Transfer, 2009, 52: 2110–2118.

    Article  Google Scholar 

  85. Shamani A., Sopian K., Mohammed H., et al., Enhancement heat transfer characteristics in the channel with Trapezoidal rib-groove using nanofluids. Case Studies in Thermal Engineering, 2015, 5: 48–58.

    Article  Google Scholar 

  86. Salman B., Mohammed H., Kherbeet A., Numerical and experimental investigation of heat transfer enhancement in a microtube using nanofluids. International Communications in Heat and Mass Transfer, 2014, 59: 88–100.

    Article  Google Scholar 

  87. Choi S., Enhancing thermal conductivity of fluids with nanoparticles, in developments and applications of nonnewtonian flows. American Society of Mechanical Engineers, New York, USA, 1995.

    Google Scholar 

  88. Lee, S., Choi, S., Li S., et al., Measuring thermal conductivity of fluids containing oxide nanoparticles. Transactions of the ASME. Journal of Heat Transfer, 1999, 121: 280–289.

    Article  Google Scholar 

  89. Tokit E., Mohammed H., Yusoff M., Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids. International Communications in Heat and Mass Transfer, 2012, 39: 1595–1604.

    Article  Google Scholar 

  90. Kuppusamy N., Mohammed H., Lim C., Thermal and hydraulic characteristics of nanofluid in a triangular grooved microchannel heat sink (TGMCHS). Applied Mathematics and Computation, 2014, 246: 168–183.

    Article  MathSciNet  MATH  Google Scholar 

  91. Pourmehran O., Gorji M., Hatami M., et al., Numerical optimization of microchannel heat sink (MCHS) performance cooled by KKL based nanofluids in saturated porous medium. Journal of the Taiwan Institute of Chemical Engineers, 2015, 000: 1–20.

    Google Scholar 

  92. Hatami M., Ganji D., Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method. Energy Conversion and Management, 2014, 78: 347–358.

    Article  Google Scholar 

  93. Sakanova A., Yin S., Zhao J., et al., Optimization and comparison of double-layer and double-side microchannel heat sinks with nanofluid for power electronics cooling. Applied Thermal Engineering, 2014, 65: 124–134.

    Article  Google Scholar 

  94. Mohammed H., Gunnasegaran P., Shuaib N., Heat transfer in rectangular micro channels heat sink using nanofluids. International Communications in Heat and Mass Transfer, 2010, 37: 1496–1503.

    Article  Google Scholar 

  95. Aliabadi M., Sahamiyan M., Performance of nanofluid flow in corrugated mini channels heat sink (CMCHS). Energy Conversion and Management, 2016, 108: 297–308.

    Article  Google Scholar 

  96. Ho C., Wei L., Li Z., An experimental investigation of forced convective cooling performance of a microchannel heat sink with Al2O3/water nanofluid. Applied Thermal Engineering, 2010, 30: 96–103.

    Article  Google Scholar 

  97. Ghazvini M., Shokouhmand H., Investigation of a nanofluid-cooled microchannel heat sink using Fin and porous media approaches. Energy Conversion and Management, 2009, 50: 2373–2380.

    Article  Google Scholar 

  98. Zhai L., Xia D., Liu F., et al., Heat transfer enhancement of Al2O3-H2O nanofluids flowing through a micro heat sink with complex structure. International Communications in Heat and Mass Transfer, 2015, 66: 158–166.

    Article  Google Scholar 

  99. Naphon P., Nakharintr L., Turbulent two phase approach model for the nanofluids heat transfer analysis flowing through the mini channel heat sinks. International Journal of Heat and Mass Transfer, 2015, 82: 388–395.

    Article  Google Scholar 

  100. Karimipour A., New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a micro channel considering slip velocity and temperature jump by using lattice Boltzmann method. International Journal of Thermal Sciences, 2015, 91: 146–156.

    Article  MathSciNet  Google Scholar 

  101. Kayhani M., Soltanzadeh H., Heyhat M., et al., Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. International Communications in Heat and Mass Transfer, 2012, 39: 456–462.

    Article  Google Scholar 

  102. Rostamani M., Hosseinizadeh S., Gorji M., et al., Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties. International Communications in Heat and Mass Transfer, 2010, 37: 1426–1431.

    Article  Google Scholar 

  103. Ferrouillat S., Bontemps A., Ribeiro J., et al., Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions. International Journal of Heat and Fluid Flow, 2011, 32: 424–439.

    Article  Google Scholar 

  104. Sharma K., Sundar L., Sarma P., Estimation of heat transfer coefficient and friction factor in the transition flow with low volume concentration of Al2O3 nanofluid flowing in a circular tube and with twisted tape insert. International Communications in Heat and Mass Transfer, 2009, 36: 503–507.

    Article  Google Scholar 

  105. Sundar L., Sharma K., Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. International Journal of Heat and Mass Transfer, 2010, 53: 1409–1416.

    Article  MATH  Google Scholar 

  106. Godson L., Raja B., Mohan Lal D., et al., Convective heat transfer characteristics of silver-water nanofluid under laminar and turbulent flow conditions. Journal of Thermal Science and Engineering Applications, 2012, 4: 031001.

    Article  Google Scholar 

  107. Yu W., France D., Smith D., et al., Heat transfer to a silicon carbide/water nanofluid. International Journal of Heat and Mass Transfer, 2009, 52: 3606–3612.

    Article  Google Scholar 

  108. Sundar L., Singh M., Bidkin I., et al., Experimental investigations in heat transfer and friction factor of magnetic Ni nanofluid flowing in a tube. International Journal of Heat and Mass Transfer, 2014, 70: 224–234.

    Article  Google Scholar 

  109. Hojjat M., Etemad S., Bagheri R., et al., Turbulent forced convection heat transfer of non-Newtonian nanofluids. Experimental Thermal and Fluid Science, 2011, 35: 1351–1356.

    Article  Google Scholar 

  110. Zamzamian A., Oskouie S., Doosthoseini A., et al., Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Experimental Thermal and Fluid Science, 2011, 35: 495–502.

    Article  Google Scholar 

  111. Thiangtham P., Keepaiboon C., Kiatpachai P., et al., An experimental study on two-phase flow patterns and heat transfer characteristics during boiling of R134a flowing through a multi micro channel heat sink. International Journal of Heat and Mass Transfer, 2016, 98: 390–400.

    Article  Google Scholar 

  112. Zhang W., Hibiki T., Mishima K., Flow boiling heat transfer of R134a and R245fa in a 2.3 mm tube. International Journal of Heat and Mass Transfer, 2004, 47: 5749–5763.

    Article  Google Scholar 

  113. Abdoli A., Jimenez G., Dulikravich G., Thermo-fluid analysis of micro pin-fin array cooling configurations for high heat fluxes with a hot spot. International Journal of Thermal Sciences, 2015, 90: 290–297.

    Article  Google Scholar 

  114. Chen C., Ding C., Study on the thermal behaviour and cooling performance of a nanofluid-cooled microchannel heat sink. International Journal of Thermal Sciences, 2011, 50: 378–384.

    Article  Google Scholar 

  115. Xia G., Ma D., Zhai Y., et al., Experimental and numerical study of fluid flow and heat transfer characteristic in microchannel heat sink with complex structure. Energy Conversion and Management, 2015, 105: 848–857.

    Article  Google Scholar 

  116. Zhai Y., Xia G., Liu X., et al., Exergy analysis and performance evaluation of flow and heat transfer in different micro heat sinks with complex structure. International Journal of Heat and Mass Transfer, 2015, 84: 293–303.

    Article  Google Scholar 

  117. Sharma C., Schlottig G., Brunschwiler T., et al., A novel method of energy efficient hotspot-targeted embedded liquid cooling for electronics: an experimental study. International Journal of Heat and Mass Transfer, 2015, 88: 684–694.

    Article  Google Scholar 

  118. He H., Li P., Yan R., et al., Modeling of reversal flow and pressure fluctuation in rectangular microchannel. International Journal of Heat and Mass Transfer, 2016, 102: 1024–1033.

    Article  Google Scholar 

  119. Raghuraman D.R.S., Thundil Karuppa Raj R., Nagarajan P., et al., Influence of aspect ratio on the thermal performance of rectangular shaped micro channel heat sink using CFD code. Alexandria Engineering Journal, 2017, 56: 43–54.

    Article  Google Scholar 

  120. Li Y., Zhang F., Sunden B., et al., Laminar thermal performance of microchannel heat sink with constructal vertical Y-shaped bifurcation plates. Applied Thermal Engineering, 2014, 73: 183–193.

    Google Scholar 

  121. Sakanova A., Keian C., Zhao J., Performance of microchannel heat sink using wavy microchannel and nanofluids. International Journal of Heat and Mass Transfer, 2015, 89: 59–74.

    Article  Google Scholar 

  122. Ma D., Xia G., Li Y., et al., Effects of structural parameters on fluid flow and heat transfer characteristic in microchannel with offset zigzag grooves in sidewall. International Journal of Heat and Mass Transfer, 2016, 101: 427–435.

    Article  Google Scholar 

  123. Shafeie H., Abouali O., Jafarpur K., et al., Numerical study of heat transfer performance of single- phase heat sinks with micro pin-fin structures. Applied Thermal Engineering, 2013, 58: 68–76.

    Article  Google Scholar 

  124. Xu M., Lu H., Chai J., et al., Parametric numerical study of the flow and heat transfer in microchannel with dimples. International Communications in Heat and Mass Transfer, 2016, 76: 348–357.

    Article  Google Scholar 

  125. Colgan E., Furman B., Gayness M., et al., A practical implementation of silicon microchannel coolers for high power chips. IEEE Transactions on Components and Packaging Technologies, 2007, 30: 218–225.

    Article  Google Scholar 

  126. Yang Q., Miao J., Zhao J., et al., Flow boiling of ammonia in a diamond-made microchannel heat sink for high heat flux hotspots. Journal of Thermal Science, 2020, 29(5): 1333–1344.

    Article  Google Scholar 

  127. Leng C., Wang X., Wang T., et al., Optimization of thermal resistance and bottom wall temperature uniformity for double-layered microchannel heat sinks. Energy Conversion and Management, 2015, 93: 141–150.

    Article  Google Scholar 

  128. Lin L., Chen Y., Zhang X., et al., Optimization of geometry and flow rate distribution for double-layer microchannel heat sink. International Journal of Thermal Sciences, 2014, 78: 158–168.

    Article  Google Scholar 

  129. Wong K., Muezzin F., Heat transfer of a parallel flow two-layered micro channel heat sink. International Communications in Heat and Mass Transfer, 2013, 49: 136–140.

    Article  Google Scholar 

  130. Hung T., Yan W., Wang X., et al., Optimal design of geometric parameters of double-layered microchannel heat sinks. International Journal of Heat and Mass Transfer, 2012, 55: 3262–3272.

    Article  Google Scholar 

  131. Tran N., Chang Y., Teng J., et al., Enhancement thermodynamic performance of microchannel heat sink by using a novel multi-nozzle structure. International Journal of Heat and Mass Transfer, 2016, 101: 656–666.

    Article  Google Scholar 

  132. Chuan L., Wang X., Wang T., et al., Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept. International Communications in Heat and Mass Transfer, 2015, 65: 52–57.

    Article  Google Scholar 

  133. Wong K., Lee J., Investigation of thermal performance of microchannel heat sink with triangular ribs in the transverse micro chambers. International Communications in Heat and Mass Transfer, 2015, 65: 103–110.

    Article  Google Scholar 

  134. Ahmed H., Ahmed M., Optimum thermal design of triangular, trapezoidal and rectangular grooved microchannel heat sinks. International Communications in Heat and Mass Transfer, 2015, 66: 47–57.

    Article  Google Scholar 

  135. Wang G., Niu D., Xie F., et al., Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling. Applied Thermal Engineering, 2015, 85: 61–70.

    Article  Google Scholar 

  136. Kuppusamy N., Mohammed H., Lim C., Numerical investigation of trapezoidal grooved microchannel heat sink using nanofluids. Thermochimica Acta, 2013, 573: 39–56.

    Article  Google Scholar 

  137. Lee P., Garimella S., Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays. International Journal of Heat and Mass Transfer, 2008, 51: 789–806.

    Article  MATH  Google Scholar 

  138. Todreas N., Kazimi M., Nuclear Systems I, Hemisphere, New York, USA, 1990.

    Google Scholar 

  139. Siu-Ho A., Qu W., Experimental study of pressure drop and heat transfer in a single-phase micropin-fin heat sink. Journal of Electronic Packaging, 2007, 129: 479–487.

    Article  Google Scholar 

  140. Short B., Jr. Raad P., Price C., Performance of pin fin cast aluminum cold walls, Part 1: Friction factor correlation. Journal of Thermophysics and Heat Transfer, 2002, 16: 389–396.

    Article  Google Scholar 

  141. Moores K., Joshi Y., Effect of tip clearance on the thermal and hydrodynamic performance of a shrouded pin fin array. ASME Journal of Heat Transfer, 2003, 125: 999–1006.

    Article  Google Scholar 

  142. Kosar A., Mishra C., Peles Y., Laminar flow across a bank of low aspect ratio micro pin fins. ASME Journal of Fluids Engineering, 2005, 127: 419–430.

    Article  Google Scholar 

  143. Steinke M., Kandlikar S., Single-phase liquid friction factors in micro channels. International Journal of Thermal Sciences, 2006, 45: 1073–1083.

    Article  Google Scholar 

  144. Donaldson A., Kirpalani D., Macchi A., Single and two-phase pressure drop in serpentine mini-channels. Chemical Engineering and Processing, 2011, 50: 877–884.

    Article  Google Scholar 

  145. Moraveji M., Ardehali R., Ijam A., CFD investigation of nanofluid effects (cooling performance and pressure drop) in mini-channel heat sink. International Communications in Heat and Mass Transfer, 2013, 40: 58–66.

    Article  Google Scholar 

  146. Qi S., Zhang P., Wang R., et al., Single-phase pressure drop and heat transfer characteristics of turbulent liquid nitrogen flow in micro-tubes. International Journal of Heat and Mass Transfer, 2007, 50: 1993–2001.

    Article  MATH  Google Scholar 

  147. Cao H., Chen G., Yuan Q., Thermal performance of cross flow micro channel heat exchangers. Industrial & Engineering Chemistry Research, 2010, 49: 6215–6220.

    Article  Google Scholar 

  148. Cao H., Chen G., Yuan Q., Testing and design of a microchannel heat exchanger with multiple plates. Industrial & Engineering Chemistry Research, 2009, 48: 4535–4541.

    Article  Google Scholar 

  149. Churchill S., Friction-factor equation spans all fluid-flow regimes. Chemical Engineering Journal, 1977, 84: 91–92.

    Google Scholar 

  150. Chisholm, D., A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. International Journal of Heat and Mass Transfer, 1967, 10: 1767–1778.

    Article  Google Scholar 

  151. Kim S., Mudawar I., Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows. International Journal of Heat and Mass Transfer, 2014, 77: 74–97.

    Article  Google Scholar 

  152. Coleman J., Flow visualization and pressure drop for refrigerant phase change and air-water flow in small hydraulic diameter geometries. Iowa State University, Ames, USA, 2000.

    Book  Google Scholar 

  153. Lockhart R., Martinelli R., Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chemical Engineering Progress, 1949, 45: 39–48.

    Google Scholar 

  154. Muller-Steinhagen H., Heck K., A simple friction pressure drop correlation for two-phase flow in pipes. Chemical Engineering and Processing-Process Intensification, 1986, 20: 297–308.

    Article  Google Scholar 

  155. Jung D., Radermacher R., Prediction of pressure drop during horizontal annular flow boiling of pure and mixed refrigerants. International Journal of Heat and Mass Transfer, 1989, 32: 2435–2446.

    Article  Google Scholar 

  156. Yang C., Web R., Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without micro-fins. International Journal of Heat and Mass Transfer, 1996, 39: 801–809.

    Article  Google Scholar 

  157. Yan Y., Lin T., Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe. International Journal of Heat and Mass Transfer, 1998, 41: 4183–4194.

    Article  Google Scholar 

  158. Chen I., Yang K., Chang Y., et al., Two-phase pressure drop of air-water and R-410A in small horizontal tubes. International Journal of Multiphase Flow, 2001, 27: 1293–1299.

    Article  MATH  Google Scholar 

  159. Lee H., Lee S., Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights. International Journal of Multiphase Flow, 2001, 27: 783–796.

    Article  MATH  Google Scholar 

  160. Yu W., France D., Wambsganss M., et al., Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. International Journal of Multiphase Flow, 2002, 28: 927–941.

    Article  MATH  Google Scholar 

  161. Hwang Y., Kim M., The pressure drop in micro tubes and the correlation development. International Journal of Heat and Mass Transfer, 2006, 49: 1804–1812.

    Article  Google Scholar 

  162. Zhang W., Hibiki T., Mishima K., Correlations of two-phase frictional pressure drop and void fraction in mini-channel. International Journal of Heat and Mass Transfer, 2010, 53: 453–465.

    Article  MATH  Google Scholar 

  163. Kim S., Mudawar I., Consolidated method to predicting pressure drop and heat transfer coefficient for both subcooled and saturated flow boiling in micro-channel heat sinks. International Journal of Heat and Mass Transfer, 2012, 55: 3720–3731.

    Article  Google Scholar 

  164. McAdams W., Woods W., Heroman L., Vaporization inside horizontal tubes, II. Benzene-oil mixture. Transactions of the ASME, 1942, 64: 193–200.

    Google Scholar 

  165. Akers W., Deans H., Crosser O., Condensing heat transfer within horizontal tubes. Chemical Engineering Progress, 1958, 54: 89–90.

    Google Scholar 

  166. Dukler A., Wicks M., Cleaveland R., Pressure drop and hold up in two-phase flow. AIChE Journal, 1964, 10: 38–51.

    Article  Google Scholar 

  167. Lin S., Kwok C., Li R., et al., Local frictional pressure drop during vaporization of R-12 through capillary tubes. International Journal of Multiphase Flow, 1991, 17: 95–102.

    Article  MATH  Google Scholar 

  168. Cicchitti A., Lombardi C., Silvestri M., et al., Two-phase cooling experiments-pressure drop, heat transfer and burnout measurements. Energia Nuclear, 1960, 7: 407–425.

    Google Scholar 

  169. Owens W., Two-phase pressure gradient. International Developments in Heat Transfer, Part II, ASME, New York, USA, 1961.

    Google Scholar 

  170. Beattie D., Whalley P., A simple two-phase frictional pressure drop calculation method. International Journal of Multiphase Flow, 1982, 8: 83–87.

    Article  Google Scholar 

  171. Sun L., Mishima K., Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels. International Journal of Multiphase Flow, 2009, 35: 47–54.

    Article  Google Scholar 

  172. Li W., Wu Z., A general correlation for adiabatic twophase pressure drop in micro/mini-channels. International Journal of Heat and Mass Transfer, 2010, 53: 2732–2739.

    Article  Google Scholar 

  173. Li W., Wu Z., Generalized adiabatic pressure drop correlations in evaporative micro/mini-channels. Experimental Thermal and Fluid Science, 2011, 35: 866–872.

    Article  Google Scholar 

  174. Kim S., Mudawar I., Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling. International Journal of Heat and Mass Transfer, 2013, 58: 718–734.

    Article  Google Scholar 

  175. Lee J., Kim S., Effect of channesl geometry on the operating limit of micro pulsating heat pipes. International Journal of Heat and Mass Transfer, 2017, 107: 204–212.

    Article  Google Scholar 

  176. Brinda R., Daniel R., Sumangalaa K., Effect of aspect ratio on the hydraulic and thermal performance of ladder shape micro channels employed micro cooling systems. Procedia Engineering, 2012, 38: 2022–2032.

    Article  Google Scholar 

  177. Wang H., Chen Z., Gao J., Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Applied Thermal Engineering, 2016, 107: 870–879.

    Article  Google Scholar 

  178. Wang Y., Sefiane K., Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro-channels using transparent heating. International Journal of Heat and Mass Transfer, 2012, 55: 2235–2243.

    Article  Google Scholar 

  179. Hong S., Tang Y., Lai Y., et al., An experimental investigation on effect of channel configuration in ultrashallow micro multi-channels flow boiling: Heat transfer enhancement and visualized presentation. Experimental Thermal and Fluid Science, 2017, 83: 239–247.

    Article  Google Scholar 

  180. Vinoth R., Kumar D., Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink. International Communications in Heat and Mass Transfer, 2017, 87: 270–276.

    Article  Google Scholar 

  181. Moradikazerouni A., Afrand M., Alsarraf J., et al., Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board. Applied Thermal Engineering, 2019, 150: 1078–1089.

    Article  Google Scholar 

  182. Zhang Y., Wang S., Ding P., Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. International Journal of Heat and Mass Transfer, 2017, 113: 295–309.

    Article  Google Scholar 

  183. Ghule K., Soni M., Numerical heat transfer analysis of wavy micro channels with different cross sections. Energy Procedia, 2017, 109: 471–478.

    Article  Google Scholar 

  184. Sempertegui-Tapia D., Ribatski G., The effect of the cross-sectional geometry on saturated flow boiling heat transfer in horizontal micro-scale channels. Experimental Thermal and Fluid Science, 2017, 89: 98–109.

    Article  Google Scholar 

  185. Zheng L., Zhang D., Xie Y., et al., Thermal performance of dimpled/protruded circular and annular micro channel tube heat sink. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 342–351.

    Article  Google Scholar 

  186. Yu M., Diallo T., Zhao X., et al., Analytical study of impact of the wick’s fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe. Energy, 2018, 158: 746–759.

    Article  Google Scholar 

  187. Kim D., Jeong S., Effect of micro-grooves on the two-phase pressure drop of CO2 in a mini-channel tube. International Journal of Refrigeration, 2013, 36: 2040–2047.

    Article  Google Scholar 

  188. Moradi H., Floryan J., Maximization of heat transfer across micro-channels. International Journal of Heat and Mass Transfer, 2013, 66: 517–530.

    Article  Google Scholar 

  189. Xia G., Ma D., Wang W., et al., Effects of different structures and allocations on fluid flow and heat transfer performance in 3D-IC integrated micro-channel interlayer cooling. International Journal of Heat and Mass Transfer, 2015, 91: 1167–1175.

    Article  Google Scholar 

  190. Chai L., Xia G., Wang H., Laminar flow and heat transfer characteristics of interrupted microchannel heat sink with ribs in the transverse micro chambers. International Journal of Thermal Sciences, 2016, 110: 1–11.

    Article  Google Scholar 

  191. Chai L., Xia G., Wang H., Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on side walls - Part 1: Heat transfer. International Journal of Heat and Mass Transfer, 2016, 97: 1069–s1080.

    Article  Google Scholar 

  192. Chai L., Xia G., Wang H., Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls — Part 2: Pressure drop. International Journal of Heat and Mass Transfer, 2016, 97: 1081–1090.

    Article  Google Scholar 

  193. Chuan L., Wang X., Wang T., et al., Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept. International Communications in Heat and Mass Transfer, 2015, 65: 52–57.

    Article  Google Scholar 

  194. Li X., Wang S., Wang X., et al., Selected porous-ribs design for performance improvement in double-layered microchannel heat sinks. International Journal of Thermal Sciences, 2019, 137: 616–626.

    Article  Google Scholar 

  195. Lu G., Zhao J., Lin L., et al., A new scheme for reducing pressure drop and thermal resistance simultaneously in microchannel heat sinks with wavy porous fins. International Journal of Heat and Mass Transfer, 2017, 111: 1071–1078.

    Article  Google Scholar 

  196. Kim C., Leng C., Wang X., et al., Effects of slot-jet length on the cooling performance of hybrid micro channel/slot-jet module. International Journal of Heat and Mass Transfer, 2015, 89: 838–845.

    Article  Google Scholar 

  197. Leng C., Wang X., Wang T., et al., Optimization of thermal resistance and bottom wall temperature uniformity for double-layered microchannel heat sink. Energy Conversion and Management, 2015, 93: 141–150.

    Article  Google Scholar 

  198. Liu J., Xie G., Simon T., Turbulent flow and heat transfer enhancement in rectangular channels with novel cylindrical grooves. International Journal of Heat and Mass Transfer, 2015, 81: 563–577.

    Article  Google Scholar 

  199. Li P., Zhang D., Xie Y., et al., Flow structure and heat transfer of non-Newtonian fluids in microchannel heat sinks with dimples and protrusions. Applied Thermal Engineering, 2016, 94: 50–58.

    Article  Google Scholar 

  200. Shen B., Yan H., Sunden B., et al., Forced convection and heat transfer of water-cooled microchannel heat sinks with various structured metal foams. International Journal of Heat and Mass Transfer, 2017, 113: 1043–1053.

    Article  Google Scholar 

  201. Shen H., Xie G., Wang C., Heat transfer and thermodynamic analysis by introducing multiple alternation structures into double-layer microchannel heat sinks. International Journal of Thermal Sciences, 2019, 145: 105975.

    Article  Google Scholar 

  202. Xie J., Yan H., Sunden B., et al., The influences of sidewall proximity on flow and thermal performance of a microchannel with large-row pin-fins. International Journal of Thermal Sciences, 2019, 140: 8–19.

    Article  Google Scholar 

  203. Shen H., Xie G., Wang C., The numerical simulation with staggered alternation locations and multiflow directions on the thermal performance of double-layer microchannel heat sinks. Applied Thermal Engineering, 2019, 163: 114332.

    Article  Google Scholar 

  204. Chen Y., Peng B., Hao X., et al., Fast approach of Pareto-optimal solution recommendation to multiobjective optimal design of serpentine-channel heat sink. Applied Thermal Engineering, 2014, 70: 263–273.

    Article  Google Scholar 

  205. Li P., Xie Y., Zhang D., Laminar flow and forced convective heat transfer of shear-thinning power-law fluids in dimpled and protruded micro channels. International Journal of Heat and Mass Transfer, 2016, 99: 372–382.

    Article  Google Scholar 

  206. Li P., Luo Y., Zhang D., et al., Flow and heat transfer characteristics and optimization study on the watercooled microchannel heat sinks with dimple and pin-fin. International Journal of Heat and Mass Transfer, 2018, 119: 152–162.

    Article  Google Scholar 

  207. Jing Q., Xie Y., Zhang D., Thermal-hydraulic performance and entropy generation of supercritical carbon dioxide in heat exchanger channels with teardrop dimple/protrusion. International Journal of Heat and Mass Transfer, 2019, 135: 1082–1096.

    Article  Google Scholar 

  208. Prajapati Y., Influence of fin height on heat transfer and fluid flow characteristics of rectangular microchannel heat sink. International Journal of Heat and Mass Transfer, 2019, 137: 1041–1052.

    Article  Google Scholar 

  209. Kuppusamy N., Ghazali N., Saidur R., et al., Optimum design of triangular shaped micro mixer in micro channel heat sink. International Journal of Heat and Mass Transfer, 2015, 91: 52–62.

    Article  Google Scholar 

  210. Wu H., Cheng P., An experimental study of convective heat transfer in silicon micro-channels with different surface conditions. International Journal of Heat and Mass Transfer, 2003, 46 (14): 2547–2556.

    Article  Google Scholar 

  211. Gamrat G., Favre-Marinet M., Le Person S., et al., An experimental study and modelling of roughness effects on laminar flow in micro channels. Journal of Fluid Mechanics, 2008, 594: 399–423.

    Article  ADS  MATH  Google Scholar 

  212. Hakamada M., Asao Y., Saito N., et al., Microfluidic flows in metallic micro-channels fabricated by the spacer method. Journal of Micromechanics and Micro engineering, 2008, 18: 075029.

    Article  ADS  Google Scholar 

  213. Dai B., Li M., Ma Y., Effect of surface roughness on liquid friction and transition characteristics in micro- and mini-channels. Applied Thermal Engineering, 2014, 67: 283–293.

    Article  Google Scholar 

  214. He G., Yamazaki Y., Abudula A., The effect of wall roughness on the liquid removal in micro-channels related to a proton exchange membrane fuel cell (PEMFC). Journal of Power Sources, 2010, 195: 1561–1568.

    Article  ADS  Google Scholar 

  215. Al-Asadi M., Alkasmoul F., Wilson M., Heat transfer enhancement in a micro-channel cooling system using cylindrical vortex generators. International Communications in Heat and Mass Transfer, 2016, 74: 40–47.

    Article  Google Scholar 

  216. Tardu F., Shiu H., Effect of an external force on the by-pass transition mechanism in internal flows electrical double layer effect in mini and micro-channels. Communications in Nonlinear Science and Numerical Simulation, 2010, 15: 3444–3454.

    Article  ADS  Google Scholar 

  217. Li S., Bao Y., Wang P., et al., Effect of nano-structure coating on thermal performance of thermosyphon boiling in micro-channels. International Journal of Heat and Mass Transfer, 2018, 124: 463–474.

    Article  Google Scholar 

  218. Khanikar V., Mudawar I., Fisher T., Effects of carbon nanotube coating on flow boiling in a micro-channel. International Journal of Heat and Mass Transfer, 2009, 52: 3805–3817.

    Article  Google Scholar 

  219. Zhou H., He B., Cai G., Wall temperature effect on mass flux in a short micro-tube. Vacuum, 2018, 152: 301–304.

    Article  ADS  Google Scholar 

  220. Raj S., Pathak M., Khan K., Effects of flow loop components in suppressing flow boiling instabilities in microchannel heat sinks. International Journal of Heat and Mass Transfer, 2019, 141: 1238–1251.

    Article  Google Scholar 

  221. Kim Y., Ahn K., Lee S., Effect of silica particles on vortex dynamics in a micro-contraction channel flow of poly (ethylene oxide) solutions. Journal of Non-Newtonian Fluid Mechanics, 2016, 234: 170–177.

    Article  MathSciNet  Google Scholar 

  222. Hasan M., Tbena H., Using of phase change materials to enhance the thermal performance of micro channel heat sink. Engineering Science and Technology, 2018, 21: 517–526.

    Google Scholar 

  223. Asako Y., Pi T., Turner S., et al., Effect of compressibility on gaseous flows in micro-channels. International Journal of Heat and Mass Transfer, 2003, 46: 3041–3050.

    Article  MATH  Google Scholar 

  224. Li X., Jia L., Dang C., et al., Effect of flow instability on flow boiling friction pressure drop in parallel microchannels. International Communications in Heat and Mass Transfer, 2018, 97: 64–71.

    Article  Google Scholar 

  225. Zhang W., Zhang Z., Huang H., et al., Effect of refrigerant flow direction and throttle opening in RAC unit using micro-channel evaporator. International Journal of Refrigerant, 2016, 70: 280–288.

    Article  Google Scholar 

  226. Liu H., Shao X., Jia J., Effects of axial heat conduction and viscous dissipation on heat transfer in circular microchannels. International Journal of Thermal Sciences, 2013, 66: 34–41.

    Article  Google Scholar 

  227. Lijo V., Kim H., Setoguchi T., Effects of choking on flow and heat transfer in micro-channels. International Journal of Heat and Mass Transfer, 2012, 55: 701–709.

    Article  MATH  Google Scholar 

  228. Torabi M., Peterson G., Effects of velocity slip and temperature jump on the heat transfer and entropy generation in micro porous channels under magnetic field. International Journal of Heat and Mass Transfer, 2016, 102: 585–595.

    Article  Google Scholar 

  229. Lim J., Kim S., Effect of a channel layout on the thermal performance of a flat plate micro pulsating heat pipe under the local heating condition. International Journal of Heat and Mass Transfer, 2019, 137: 1232–1240.

    Article  Google Scholar 

  230. Mangini D., Mameli M., Fioriti D., et al., Hybrid pulsating heat pipe for space applications with non-uniform heating patterns: Ground and microgravity experiments. Applied Thermal Engineering, 2017, 126: 1029–1043.

    Article  Google Scholar 

  231. Zhang W., Xu J., Liu G., Multi-channel effect of condensation flow in a micro triple-channel condenser. International Journal of Multiphase Flow, 2008, 34: 1175–1184.

    Article  Google Scholar 

  232. Wang G., Cheng P., Wu H., Unstable and stable flow boiling in parallel micro channels and in a single microchannel. International Journal of Heat and Mass Transfer, 2007, 50: 4297–4310.

    Article  MATH  Google Scholar 

  233. Ding Y., Kakac S., Chen X., Dynamic instabilities of boiling two-phase flow in a single horizontal channel. Experimental Thermal and Fluid Science, 1995, 11: 327–342.

    Article  Google Scholar 

  234. Singh S., Bhide R., Duttagupta S., et al., Two-phase flow pressure drop characteristics in trapezoidal silicon micro channels. IEEE Transactions on Components and Packaging Technologies, 2009, 32: 887–900.

    Article  Google Scholar 

  235. Sabbah R., Farid M., Al-Hallaj S., Micro-channel heat sink with slurry of water with micro-encapsulated phase change material: 3D-numerical study. Applied Thermal Engineering, 2008, 29: 445–454.

    Article  Google Scholar 

  236. Li J., Kleinstreuer C., Thermal performance of nanofluid flow in microchannels. International Journal of Heat and Fluid Flow, 2008, 29: 1221–1232.

    Article  Google Scholar 

  237. Nimmagadda R., Venkatasubbaiah K., Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3+Ag/Water). European Journal of Mechanics B/Fluids, 2015, 52: 19–27.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  238. Saisorn S., Kuaseng P., Wongwises S., Heat transfer characteristics of gas-liquid flow in horizontal rectangular micro-channels. Experimental Thermal and Fluid Science, 2014, 55: 54–61.

    Article  Google Scholar 

  239. Dang C., Jia L., Xu M., et al., Experimental study on flow boiling characteristics of pure refrigerant (R134a) and zeotropic mixture (R407C) in a rectangular microchannel. International Journal of Heat and Mass Transfer, 2017, 104: 351–361.

    Article  Google Scholar 

  240. Xiang X., Yang J., Fan A., et al., A comparison between cooling performances of water-based and gallium-based micro-channel heat sinks with the same dimensions. Applied Thermal Engineering, 2018, 137: 1–10.

    Article  Google Scholar 

  241. Li M., Guo Q., Lv J., et al., Research on condensation heat transfer characteristics of R447A, R1234ze, R134a and R32 in multi-port micro-channel tubes. International Journal of Heat and Mass Transfer, 2018, 118: 637–650.

    Article  Google Scholar 

  242. Lee A., Yeoh G., Timchenko V., et al., Heat transfer enhancement in micro-channel with multiple synthetic jets. Applied Thermal Engineering, 2012, 48: 275–288.

    Article  Google Scholar 

  243. Gan T., Ming T., Fang W., et al., Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets. Journal of Thermal Analysis and Calorimetry, 2020, 141: 45–56.

    Article  Google Scholar 

  244. Husain A., Ariz M., Al-Rawahi N., et al., Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink. Applied Thermal Engineering, 2016, 102: 989–1000.

    Article  Google Scholar 

  245. Huang X., Yang W., Ming T., et al., Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples. International Journal of Heat and Mass Transfer, 2017, 112: 113–124.

    Article  Google Scholar 

  246. Barrau J., Omri M., Chemisana D., et al., Numerical study of a hybrid jet impingement/micro-channel cooling scheme. Applied Thermal Engineering, 2012, 33: 237–245.

    Article  Google Scholar 

  247. Barrau J., Rosell J., Chemisana D., et al., Effect of a hybrid jet impingement/micro-channel cooling device on the performance of densely packed PV cells under high concentration. Solar Energy, 2011, 85: 2655–2665.

    Article  ADS  Google Scholar 

  248. Li P., Luo Y., Zhang D., et al., Flow and heat transfer characteristics and optimization study on the watercooled microchannel heat sinks with dimple and pin-fin. International Journal of Heat and Mass Transfer, 2018, 119: 152–162.

    Article  Google Scholar 

  249. Gururatana S., Numerical simulation of micro-channel heat sink with dimpled surfaces. American Journal of Applied Sciences, 2012, 9: 399–404.

    Article  Google Scholar 

  250. Lu G., Zhai X., Analysis on heat transfer and pressure drop of a microchannel heat sink with dimples and vortex generators. International Journal of Thermal Sciences, 2019, 145: 105986.

    Article  Google Scholar 

  251. Xu M., Lu H., Gong L., et al., Parametric numerical study of the flow and heat transfer in microchannel with dimples. International Communications in Heat and Mass Transfer, 2016, 76: 348–357.

    Article  Google Scholar 

  252. Ghani I., Sidik N., Mamat R., et al., Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels. International Journal of Heat and Mass Transfer, 2017, 114: 640–655.

    Article  Google Scholar 

  253. Wang Y., Houshmand F., Elcock D., et al., Convective heat transfer and mixing enhancement in a microchannel with a pillar. International Journal of Heat and Mass Transfer, 2013, 62: 553–561.

    Article  Google Scholar 

  254. Harris K., Brett M., Smy T., et al., Microchannel surface area enhancement using porous thin films. Journal of the Electrochemical Society, 2000, 147: 2002–2006.

    Article  ADS  Google Scholar 

  255. Mahalingam M., Thermal management in semiconductor device packaging. Proceeding of the IEEE, 1985, 73: 1396–1404.

    Article  ADS  Google Scholar 

  256. Phillips R., Micro channel heat sinks. Lincoln Laboratory Journal, 1988, I: 31–48.

    ADS  Google Scholar 

  257. Schmidt R., Challenges in electronic cooling-opportunities for enhanced thermal management techniques micro process or liquid cooled mini channel heat sink. Heat Transfer Engineering, 2004, 25: 3–12.

    Article  ADS  Google Scholar 

  258. Kandlikar S., Bapat A., Evaluation of jet impingement, spray and micro-channel chip cooling options for high heat flux removal. Heat Transfer Engineering, 2007, 28: 911–923.

    Article  ADS  Google Scholar 

  259. Naqiuddin N., Saw L., Yew M., et al., Numerical study of the geometrically graded micro-channel heat sink for high heat flux application. Energy Procedia, 2017, 142: 4016–4021.

    Article  Google Scholar 

  260. Keyes R., Physicallimits and digital electronics. Proceeding of the IEEE, 1975, 63: 740–767.

    Article  ADS  Google Scholar 

  261. Xiong D., Azar K., Tavassoli B., High capacity, compact hybrid air cooling system. 10th Inter Society Conference on Thermal and Thermomechanical Phenomenain Electronic Systems, San Diego, California, 2006.

    Google Scholar 

  262. Koo J., Im S., Jiang L., et al., Integrated microchannel cooling for three-dimensional electronic circuit Architectures. Journal of Heat Transfer, 2005, 127: 49–58.

    Article  Google Scholar 

  263. Missaggia L., Walpole J., Liau Z., et al., Micro channel heat sinks for two-dimensional high-power density diode laser arrays. IEEE Journal of Quantum Electronics, 1989, 25: 1988–1992.

    Article  ADS  Google Scholar 

  264. Yin S., Tseng K., Zhao J., Design of AlN-based microchannel heat sink in direct bond copper for power electronics packaging. Applied Thermal Engineering, 2013, 52: 120–129.

    Article  Google Scholar 

  265. Gong L., Zhao J., Huang S., Numerical study on layout of micro-channel heat sink for thermal management of electronic devices. Applied Thermal Engineering, 2015, 88: 480–490.

    Article  Google Scholar 

  266. Wang P., Li S., Liu Z., Natural convective boiling in horizontal and inclined micro-channels structure using super-moist fluids for cooling 3D stacked chip. International Journal of Heat and Mass Transfer, 2017, 115: 479–487.

    Article  Google Scholar 

  267. Xu Y., Gong L., Li Y., et al., Thermal performance and mechanics characteristic for double layer microchannel heat sink. Journal of Thermal Science, 2019, 28(2): 271–282.

    Article  ADS  Google Scholar 

  268. Kumar P., Kumar C., Numerical study on heat transfer performance using Al2O3/water nanofluids in six circular channel heat sink for electronic chip. Materials Today: Proceedings, 2020, 21: 194–201.

    Google Scholar 

  269. Chen Z., Tong X., Liu H., et al., A design of the micro-plate loop heat pipe and development of the porous nickel capillary wick. Procedia Engineering, 2017, 205: 3931–3937.

    Article  Google Scholar 

  270. Li J., Lv L., Zhou G., Li X., Mechanism of a microscale flat plate heat pipe with extremely high nominal thermal conductivity for cooling high-end smartphone chips. Energy Conversion and Management, 2019, 201: 112202.

    Article  Google Scholar 

  271. Xu Y., Fan H., Shao B., Experimental and numerical investigations on heat transfer and fluid flow characteristics of integrated U-shape micro heat pipe array with rectangular pin fins. Applied Thermal Engineering, 2020, 168: 114640.

    Article  Google Scholar 

  272. Dan D., Yao C., Zhang Y., et al., Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Applied Thermal Engineering, 2019, 162: 114183.

    Article  Google Scholar 

  273. Hao X., Peng B., Xie G., et al., Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink. Applied Thermal Engineering, 2016, 100: 170–178.

    Article  Google Scholar 

  274. Liu Y., Yang X., Li J., et al., Energy savings of hybrid dew-point evaporative cooler and micro-channel separated heat pipe cooling systems for computer data centers. Energy, 2018, 163: 629–640.

    Article  Google Scholar 

  275. Yue C., Zhang Q., Zhai Z., et al., Numerical investigation on thermal characteristics and flow distribution of a parallel micro-channel separate heat pipe in data center. International Journal of Refrigeration, 2019, 98: 150–160.

    Article  Google Scholar 

  276. Roth K., Westphalen D., Dieckmann J., et al., Energy consumption characteristics of commercial building HVAC systems Volume III: Energy savings potential. Contractno, Cambridge, 2002.

    Google Scholar 

  277. Xue Z., Zhou X., Research on automotive air conditioning structure with all-aluminum microchannel heat exchanger. Electrical Appliances, 2018, 151: 110–113.

    Google Scholar 

  278. Xu K., Research on Micro-channel evaporator for automotive air conditioning. Jilin University, Changchun, China, 2018. (in Chinese)

    Google Scholar 

  279. Qian Y., Pan L., Experimental study of air cooled heat pump with a micro-channel heat exchanger. Fluid Machinery, 2017, 45: 84–87.

    Google Scholar 

  280. Tan Y., Research progress of microchannel heat exchanger used in air conditioning. Mechanical Engineer, 2018, 8: 95–97.

    Google Scholar 

  281. Zhang Y., Jin T., Gao F., Application of micro-channel condenser on heat pump air-conditioning unit for rail transit vehicle. Urban Mass Transit, 2017, 11: 24–28.

    Google Scholar 

  282. Wu J., Wang S., Ge Y., Experimental research on micro channel heat exchanger performance for residential air conditioner applications. Proceedings of the ASME 2nd international conference on micro/nano scale heat and mass transfer, Shanghai, China, 2009.

    Google Scholar 

  283. Qi Z., Zhao Y., Chen J., Performance enhancement study of mobile air conditioning system using micro channel heat exchangers. International Journal of Refrigeration, 2010, 33: 301–312.

    Article  Google Scholar 

  284. Hrnjak P., Litch A., Micro channel heat exchangers for charge minimization in air-cooled ammonia condensers and chillers. International Journal of Refrigeration, 2008, 31: 658–668.

    Article  Google Scholar 

  285. Wang H., Peterson R., Performance enhancement of a thermally activated cooling system using micro channel heat exchangers. Applied Thermal Engineering, 2011, 31 2951–2962.

    Article  Google Scholar 

  286. Barbosa J., Ribeiro G., deOliveira P., A state-of-the-art review of compact vapor compression refrigeration systems and their applications. Heat Transfer Engineering, 2012, 33: 356–374.

    Google Scholar 

  287. Kim S., Kim M., Hwang I., et al., Performance evaluation of a CO2 heat pump system for fuel cell vehicles considering the heat exchanger arrangements. International Journal of Refrigeration, 2007, 30: 1195–1206.

    Article  Google Scholar 

  288. Xu B., Han Q., Chen J., et al., Experimental investigation of frost and defrost performance of micro channel heat exchangers for heat pump systems. Applied Energy, 2013, 103: 180–188.

    Article  Google Scholar 

  289. Chen S., Chiu W., Lin M., et al., 1D and Q2D thermal resistance analysis of micro channel structure and flat plate heat pipe. Microelectronics Reliability, 2017, 72: 103–114.

    Article  Google Scholar 

  290. Zhang K., Liu Z., Zheng B., A new 3D chip cooling technology using micro-channels thermosyphon with super-moist fluids and nanofluids. Energy Conversion and Management, 2016, 128: 44–56.

    Article  Google Scholar 

  291. Yue C., Zhang Q., Zhai Z., et al., CFD simulation on the heat transfer and flow characteristics of a microchannel separate heat pipe under different filling ratios. Applied Thermal Engineering, 2018, 139: 25–34.

    Article  Google Scholar 

  292. Ling L., Zhang Q., Yu Y., et al., Experimental study on the thermal characteristics of micro channel separate heat pipe respect to different filling ratio. Applied Thermal Engineering, 2016, 102: 375–382.

    Article  Google Scholar 

  293. Ling L., Zhang Q., Yu Y., et al., Study on thermal performance of micro-channel separate heat pipe for telecommunication stations: Experiment and simulation. International Journal of Refrigerant, 2015, 59: 198–209.

    Article  Google Scholar 

  294. Ling L., Zhang Q., Yu Y., et al., Simulation of a micro channel separate heat pipe (MCSHP) under low heat flux and low mass flux. Applied Thermal Engineering, 2017, 119: 25–33.

    Article  Google Scholar 

  295. Wang X., Wei J., Deng Y., et al., Enhancement of loop heat pipe performance with the application of micro/nano hybrid structures. International Journal of Heat and Mass Transfer, 2018, 127: 1248–1263.

    Article  Google Scholar 

  296. Zhang S., Chen J., Sun Y., et al., Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe. Renewable Energy, 2019, 135: 1133–1143.

    Article  Google Scholar 

  297. Xin F., Ma T., Wang Q., Thermal performance analysis of flat heat pipe with graded mini-grooves wick. Applied Energy, 2018, 228: 2129–2139.

    Article  Google Scholar 

  298. Li G., Diallo T., Akhlaghi Y., et al., Simulation and experiment on thermal performance of a microchannel heat pipe under different evaporator temperatures and tilt angles. Energy, 2019, 179: 549–557.

    Article  Google Scholar 

  299. Nagayama G., Gyotoku S., Tsuruta T., Thermal performance of flat micro heat pipe with converging micro channels. International Journal of Heat and Mass Transfer, 2018, 122: 375–382.

    Article  Google Scholar 

  300. Wang G., Quan Z., Zhao Y., et al., Performance of a flat-plate micro heat pipe at different filling ratios and working fluids. Applied Thermal Engineering, 2019, 146: 459–468.

    Article  Google Scholar 

  301. Zhang J., Diao Y., Zhao Y., et al., Experimental study on the heat recovery characteristics of a new-type flat micro-heat pipe array heat exchanger using nanofluid. Energy Conversion and Management, 2013, 75: 609–616.

    Article  Google Scholar 

  302. Diao Y., Wang S., Zhao Y., et al., Experimental study of the heat transfer characteristics of a new-type flat micro-heat pipe thermal storage unit. Applied Thermal Engineering, 2015, 89: 871–882.

    Article  Google Scholar 

  303. Li F., Diao Y., Zhao Y., et al., Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array. Energy Conversion and Management, 2016, 112: 395–403.

    Article  Google Scholar 

  304. Diao Y., Kang Y., Liang L., et al., Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays. Energy, 2017, 138: 929–941.

    Article  Google Scholar 

  305. Diao Y., Liang L., Zhao Y., et al., Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe arrays. Applied Energy, 2019, 233.234: 894–905.

    Article  Google Scholar 

  306. Diao Y., Liang L., Kang Y., et al., Experimental study on the heat recovery characteristic of a heat exchanger based on a flat micro-heat pipe array for the ventilation of residential buildings. Energy and Buildings, 2017, 152: 448–457.

    Article  Google Scholar 

  307. Kwon G., Kim S., Experimental investigation on the thermal performance of a micro pulsating heat pipe with a dual-diameter channel. International Journal of Heat and Mass Transfer, 2015, 89: 817–828.

    Article  Google Scholar 

  308. Zhang S., Chen J., Sun Y., et al., Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe. Renewable Energy, 2019, 135: 1133–1143.

    Article  Google Scholar 

  309. Jung E., Boo J., A novel transient thermohydraulic model of a micro heat pipe. International Journal of Heat and Mass Transfer, 2019, 140: 819–827.

    Article  Google Scholar 

  310. Zhou J., Zhao X., Ma X., et al., Clear-days operational performance of a hybrid experimental space heating system employing the novel mini-channel solar thermal & PV/T panels and a heat pump. Solar Energy, 2017, 155: 464–477.

    Article  ADS  Google Scholar 

  311. Zhou J., Zhao X., Yuan Y., et al., Operational performance of a novel heat pump coupled with mini-channel PV/T and thermal panel in low solar radiation. Energy and Built Environment, 2020, 1: 50–59.

    Article  Google Scholar 

  312. Fan Y., Zhao X., Li G., et al., Analytical and experimental study of an innovative multiple-throughout-flowing micro-channel-panels-array for a solar-powered rural house space heating system. Energy, 2019, 171: 566–580.

    Article  Google Scholar 

  313. Agrawal S., Tiwari A., Experimental validation of glazed hybrid micro-channel solar cell thermal tile. Solar Energy, 2011, 85: 3046–3056.

    Article  ADS  Google Scholar 

  314. Agrawal S., Tiwari G., Energy and exergy analysis of hybrid micro-channel photovoltaic thermal module. Solar Energy, 2011, 85: 356–370.

    Article  ADS  Google Scholar 

  315. Oyinlola M., Shire G., Moss R., Investigating the effects of geometry in solar thermal absorber plates with microchannels. International Journal of Heat and Mass Transfer, 2015, 90: 552–560.

    Article  Google Scholar 

  316. Yu M., Diallo T., Zhao X., et al., Analytical study of impact of the wick’s fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe. Energy, 2018, 158: 746–759.

    Article  Google Scholar 

  317. Diallo T., Yu M., Zhou J., et al., Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger. Energy, 2019, 167: 866–888.

    Article  Google Scholar 

  318. Yu M., Chen F., Zheng S., et al., Experimental investigation of a novel solar micro-channel loop-heatpipe photovoltaic/thermal (MC-LHP-PV/T) system for heat and power generation. Applied Energy, 2019, 256: 113929.

    Article  Google Scholar 

  319. Ren X., Yu M., Zhao X., et al., Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model. Energy, 2020, 190: 116338.

    Article  Google Scholar 

  320. Modjinou M., Ji J., Li J., et al., A numerical and experimental study of micro-channel heat pipe solar photovoltaics thermal system. Applied Energy, 2017, 206: 708–722.

    Article  Google Scholar 

  321. Modjinou M., Ji J., Yuan W., et al., Performance comparison of encapsulated PCM PV/T, micro-channel heat pipe PV/T and conventional PV/T systems. Energy, 2019, 166: 1249–1266.

    Article  Google Scholar 

  322. Wang T., Zhao Y., Diao Y., et al., Performance of a new type of solar air collector with transparent-vacuum glass tube based on micro-heat pipe arrays. Energy, 2019, 177: 16–28.

    Article  Google Scholar 

  323. Zhu T., Zhao Y., Diao Y., et al., Experimental investigation on the performance of a novel solar air heater based on flat micro-heat pipe arrays (FMHPA). Energy Procedia, 2015, 70: 146–154.

    Article  Google Scholar 

  324. Zhu T., Diao Y., Zhao Y., et al., Experimental study on the thermal performance and pressure drop of a solar air collector based on flat micro-heat pipe arrays. Energy Conversion and Management, 2015, 94: 447–457.

    Article  Google Scholar 

  325. Zhu T., Diao Y., Zhao Y., et al., Thermal performance of a new CPC solar air collector with flat micro heat pipe arrays. Applied Thermal Engineering, 2016, 98: 1201–1213.

    Article  Google Scholar 

  326. Hou L., Quan Z., Zhao Y., et al., An experimental and simulative study on a novel photovoltaic-thermal collector with micro heat pipe array (MHPA-PV/T). Energy and Buildings, 2016, 124: 60–69.

    Article  Google Scholar 

  327. Deng Y., Zhao Y., Wang W., et al., Experimental investigation of performance for the novel flat plate solar collector with micro-channel heat pipe array (MHPA-FPC). Applied Thermal Engineering, 2013, 54: 440–449.

    Article  Google Scholar 

  328. Deng Y., Quan Z., Zhao Y., et al., Experimental research on the performance of household-type photovoltaicthermal system based on micro-heat-pipe array in Beijing. Energy Conversion and Management, 2015, 106: 1039–1047.

    Article  Google Scholar 

  329. Deng Y., Zhao Y., Quan Z., et al., Experimental study of the thermal performance for the novel flat plate solar water heater with micro heat pipe array absorber. Energy Procedia, 2015, 70: 41–48.

    Article  Google Scholar 

  330. Li G., Shittu S., Zhou K., et al., Preliminary experiment on a novel photovoltaic-thermoelectric system in summer. Energy, 2019, 188: 116041.

    Article  Google Scholar 

  331. Li G., Diallo T., Akhlaghi Y., et al., Simulation and experiment on thermal performance of a microchannel heat pipe under different evaporator temperatures and tilt angles. Energy, 2019, 179: 549–557.

    Article  Google Scholar 

  332. Li G., Zhang G., He W., et al., Performance analysis on a solar concentrating thermoelectric generator using the micro-channel heat pipe array. Energy Conversion and Management, 2016, 112: 191–198.

    Article  Google Scholar 

  333. Shittu S., Li G., Zhao X., et al., Comparative study of a concentrated photovoltaic-thermoelectric system with and without flat plate heat pipe. Energy Conversion and Management, 2019, 193: 1–14.

    Article  Google Scholar 

  334. Chen H., Zhang H., Li M., et al., Experimental investigation of a novel LCPV/T system with microchannel heat pipe array. Renewable Energy, 2018, 115: 773–782.

    Article  Google Scholar 

  335. Zhou J., Zhao X., Ma X., et al., Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channelsevaporator modules. Applied Energy, 2016, 178: 484–495.

    Article  Google Scholar 

  336. Zhou J., Ma X., Zhao X., et al., Numerical simulation and experimental validation of a micro-channel PV/T modules based direct-expansion solar heat pump system. Renewable Energy, 2020, 145: 1992–2004.

    Article  Google Scholar 

  337. Kong X., Gao C., Dong S., et al., Design and application of experimental platform for micro-channel directexpansion solar energy heat pump. Experimental Technology and Management, 2017, 34: 77–80.

    Google Scholar 

Download references

Acknowledgement

The work of this paper is sponsored by National Key Research and Development Program of China (Grant No. 2018YFC0705306), National Natural Science Foundation of China (Project No. 51678488) and Applied Basic Research Project of Sichuan Province (Project No. 2017JY0253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Cao, X., Zhang, N. et al. Micro-Channel Heat Sink: A Review. J. Therm. Sci. 29, 1431–1462 (2020). https://doi.org/10.1007/s11630-020-1334-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1334-y

Keywords

Navigation