Skip to main content
Log in

On the effect of silver nanoparticles deposition on porous copper foams on pool boiling heat transfer enhancement: an experimental visualization

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Distilled water pool boiling experiments are conducted to investigate the effect of deposing silver nanoparticles via boiling-induced deposition method on porous foam covers on pool boiling performance and bubbles dynamic behavior. Two copper foams, named foam No. 1 (with 85% porosity and pore density of 30 PPI) and No. 2 (with 90% porosity and pore density of 40 PPI), are welded on copper specimens (Conical frustum) and then coated by silver nanoparticles using DZ nano-coolant nanofluid with a concentration of 25 mg/L. All the experiments are carried out at atmospheric pressure on both uncoated and nano-coated foams. The findings reveal that compared to a polished plain copper surface, uncoated foams No. 1 and No. 2 improve average boiling heat transfer coefficient by 58% and 86% and reduce wall superheat at ONB by 4.7 °C and 5.3 °C, respectively. However, due to the generation of more bubbles with smaller sizes and lower release periods on coated foams compared to uncoated ones, deposing nanoparticles on foam No. 1 and No. 2 contributes to further enhancements in heat transfer coefficients by 18% and 9% (at the best performance), respectively, and 0.3 °C further reduction in wall superheat at ONB. To evaluate the effectiveness of nanoparticle deposition on foam covers as a hybrid enhancement technique, the experimental results are compared with the results attained for nano-coated polished copper surface and also copper foam covers enhanced further by manipulating their wettability and macro-scale structure. The comparison results indicate that the coated foams perform better than the coated polished plain surfaces, notably at low heat fluxes. Also, the nanoparticle deposition on foam covers is seen to be of superior performance compared to the aforementioned hybrid enhancement techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Available.

Code availability

NA.

Abbreviations

ONB:

Onset of nucleate boiling

HTC:

Heat transfer coefficient

CHF:

Critical heat flux

PPI:

Number of pores per inch length of foam

PTFE:

Polytetrafluoroethylene

SEM:

Scanning electron microscope

TEM:

Transmission electron microscopy

DLS:

Dynamic light scattering

qʺ:

Wall heat flux (kW m−2)

T:

Temperature (°C)

H:

Heat transfer coefficient (W/cm2 K)

ρg :

Vapor density (kg/m3)

μg :

Vapor viscosity (kg/m s)

ε:

Porosity

δ:

Thickness of foam cover (mm)

dp :

Cell diameter (mm)

σ:

Interfacial energy (J/m2)

m:

Vapor flow rate (kg/s)

References

  1. Liang G, Mudawar I (2019) Review of pool boiling enhancement by surface modification. Int J Heat Mass Transf 128:892–933. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.026

    Article  Google Scholar 

  2. Holagh SG, Abdous MA, Roy P, Shamsaiee M, Shafiee M, Saffari H, Vali L, Andersson R (2021) An experimental investigation on bubbles departure characteristics during sub-cooled flow boiling in a vertical U-shaped channel utilizing high-speed photography. Therm Sci Eng Prog. https://doi.org/10.1016/j.tsep.2020.100828

    Article  Google Scholar 

  3. Holagh SG, Abdous MA, Shamsaiee M, Sa H (2020) An experimental study on the influence of radial pressure gradient on bubbles dynamic behavior in subcooled flow boiling. J Therm Sci Eng Prog. https://doi.org/10.1016/j.tsep.2019.100468

    Article  Google Scholar 

  4. Holagh SG, Abdous MA, Shamsaiee M, Saffari H (2020) Assessment of heat transfer enhancement technique in flow boiling conditions based on entropy generation analysis : twisted-tape tube. Heat Mass Transf 56:429–443. https://doi.org/10.1007/s00231-019-02705-y

    Article  Google Scholar 

  5. Abdous MA, Holagh SG, Shamsaiee M, Saffari H (2019) The prediction of bubble departure and lift-off radii in vertical U-shaped channel under subcooled flow boiling based on forces balance analysis. Int J Therm Sci 142:316–331. https://doi.org/10.1016/j.ijthermalsci.2019.04.021

    Article  Google Scholar 

  6. Yang Y, Ji X, Xu J (2010) Pool boiling heat transfer on copper foam covers with water as working fluid. Int J Therm Sci 49:1227–1237. https://doi.org/10.1016/j.ijthermalsci.2010.01.013

    Article  Google Scholar 

  7. Xu J, Ji X, Zhang W, Liu G (2008) Pool boiling heat transfer of ultra-light copper foam with open cells. Int J Multiph Flow 34:1008–1022. https://doi.org/10.1016/j.ijmultiphaseflow.2008.05.003

    Article  Google Scholar 

  8. Yang Y, Ji X, Xu J (2010) Effect of inclination angle on the pool boiling heat transfer of ultra-light copper foams. Heat Mass Transf 46:695–706. https://doi.org/10.1007/s00231-010-0620-8

    Article  Google Scholar 

  9. Zhu Y, Hu H, Ding G, Peng H, Huang X, Zhuang D (2011) Influence of oil on nucleate pool boiling heat transfer of refrigerant on metal foam covers. Int J Refrig 34:509–517. https://doi.org/10.1016/j.ijrefrig.2010.10.006

    Article  Google Scholar 

  10. Qu ZG, Xu ZG, Zhao CY, Tao WQ (2012) Experimental study of pool boiling heat transfer on horizontal metallic foam surface with crossing and single-directional V-shaped groove in saturated water. Int J Multiph Flow 41:44–55. https://doi.org/10.1016/j.ijmultiphaseflow.2011.12.007

    Article  Google Scholar 

  11. Xu ZG, Qu ZG, Zhao CY, Tao WQ (2011) Pool boiling heat transfer on open-celled metallic foam sintered surface under saturation condition. Int J Heat Mass Transf 54:3856–3867. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.043

    Article  MATH  Google Scholar 

  12. Xu ZG, Qu ZG, Zhao CY, Tao WQ (2014) Experimental correlation for pool boiling heat transfer on metallic foam surface and bubble cluster growth behavior on grooved array foam surface. Int J Heat Mass Transf 77:1169–1182. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.037

    Article  Google Scholar 

  13. Xu ZG, Zhao CY (2013) Thickness effect on pool boiling heat transfer of trapezoid-shaped copper foam fins. Appl Therm Eng 60:359–370. https://doi.org/10.1016/j.applthermaleng.2013.07.013

    Article  Google Scholar 

  14. Pranoto I, Leong KC, Jin LW (2012) The role of graphite foam pore structure on saturated pool boiling enhancement. Appl Therm Eng 42:163–172. https://doi.org/10.1016/j.applthermaleng.2012.03.001

    Article  Google Scholar 

  15. Jin LW, Leong KC, Pranoto I (2011) Saturated pool boiling heat transfer from highly conductive graphite foams. Appl Therm Eng 31:2685–2693. https://doi.org/10.1016/j.applthermaleng.2011.04.038

    Article  Google Scholar 

  16. Li T, Wu X, Ma Q (2019) Pool boiling heat transfer of R141b on surfaces covered copper foam with circular-shaped channels. Exp Therm Fluid Sci 105:136–143. https://doi.org/10.1016/j.expthermflusci.2019.03.015

    Article  Google Scholar 

  17. Xu ZG, Zhao CY (2016) Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions. Appl Therm Eng 100:68–77. https://doi.org/10.1016/j.applthermaleng.2016.02.016

    Article  Google Scholar 

  18. Xu ZG, Zhao CY (2015) Experimental study on pool boiling heat transfer in gradient metal foams. Int J Heat Mass Transf 85:824–829. https://doi.org/10.1016/j.ijheatmasstransfer.2015.02.017

    Article  Google Scholar 

  19. Xu ZG, Qin J, Qin J (2017) Pool boiling investigation on gradient metal foams with double layers. Appl Therm Eng 131:595–606. https://doi.org/10.1016/j.applthermaleng.2017.12.040

    Article  Google Scholar 

  20. Lachi L, Sofia A, Henriques O, De RR, Maria E (2020) Effect of copper foam thickness on pool boiling heat transfer of HFE-7100. Int J Heat Mass Transf 152:119547. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119547

    Article  Google Scholar 

  21. Manetti LL, Ribatski G, De Souza RR, Maria E (2020) Pool boiling heat transfer of HFE-7100 on metal foams. Exp Therm Fluid Sci 113:110025. https://doi.org/10.1016/j.expthermflusci.2019.110025

    Article  Google Scholar 

  22. Righetti G, Doretti L, Sadafi H, Hooman K (2019) Water pool boiling across low pore density aluminum foams. Heat Transf Eng 41:1–10. https://doi.org/10.1080/01457632.2019.1640464

    Article  Google Scholar 

  23. Moghadasi H, Malekian N, Sa H, Gheitaghy AM (2020) Recent advances in the critical heat flux amelioration of pool boiling surfaces using metal oxide nanoparticle deposition. Energies 13:1–49. https://doi.org/10.3390/en13154026

    Article  Google Scholar 

  24. Park SD, Moon SB, Bang IC (2014) Effects of thickness of boiling-induced nanoparticle deposition on the saturation of critical heat flux enhancement. Int J Heat Mass Transf 78:506–514. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.090

    Article  Google Scholar 

  25. Kwark SM, Moreno G, Kumar R, Moon H, You SM (2010) Nanocoating characterization in pool boiling heat transfer of pure water. Int J Heat Mass Transf 53:4579–4587. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.035

    Article  Google Scholar 

  26. Kwark SM, Amaya M, Kumar R, Moreno G, You SM (2010) Effects of pressure, orientation, and heater size on pool boiling of water with nanocoated heaters. Int J Heat Mass Transf 53:5199–5208. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.040

    Article  Google Scholar 

  27. Kim S, Kim HD, Kim H, Ahn HS, Jo H, Kim J, Kim MH (2010) Effects of nano-fluid and surfaces with nano structure on the increase of CHF. Exp Therm Fluid Sci 34:487–495. https://doi.org/10.1016/j.expthermflusci.2009.05.006

    Article  Google Scholar 

  28. Huang C, Lee C, Wang C (2011) Boiling enhancement by TiO2 nanoparticle deposition. Int J Heat Mass Transf 54:4895–4903. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.001

    Article  Google Scholar 

  29. Stutz B, Henrique C, Morceli S, De Fátima M, Cioulachtjian S, Bonjour J (2011) Influence of nanoparticle surface coating on pool boiling. Exp Therm Fluid Sci 35:1239–1249. https://doi.org/10.1016/j.expthermflusci.2011.04.011

    Article  Google Scholar 

  30. Sakashita H (2012) CHF and near-wall boiling behaviors in pool boiling of water on a heating surface coated with nanoparticles. Int J Heat Mass Transf 55:7312–7320. https://doi.org/10.1016/j.ijheatmasstransfer.2012.07.061

    Article  Google Scholar 

  31. Amaya M, Kwark SM, Gurung A, You SM (2018) Pool boiling heat transfer of borated (H3BO3) water on a nanoporous surface. Jouranal Heat Transf 135:1–8. https://doi.org/10.1115/1.4024422

    Article  Google Scholar 

  32. Hegde RN, Rao SS, Reddy RP (2012) Investigations on boiling-induced nanoparticle coating, transient characteristics, and effect of pressure in pool boiling heat transfer on a cylindrical surface. Exp Heat Transf 25:323–340. https://doi.org/10.1080/08916152.2011.623821

    Article  Google Scholar 

  33. Souza RR, Passos JC, Cardoso EM (2014) Influence of nanoparticle size and gap size on nucleate boiling using HFE7100. Exp Therm Fluid Sci 59:195–201. https://doi.org/10.1016/j.expthermflusci.2013.11.001

    Article  Google Scholar 

  34. Heitich LV, Passos JC, Cardoso EM, da Silva MF, Klein AN (2014) Nucleate boiling of water using nanostructured surfaces. J Braz Soc Mech Sci Eng 36:181–192. https://doi.org/10.1007/s40430-013-0058-2

    Article  Google Scholar 

  35. Kiyomura IS, Manetti LL, Cunha AP, Ribatski G, Cardoso EM (2017) An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and on pool boiling of water. Int J Heat Mass Transf 106:666–674. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.051

    Article  Google Scholar 

  36. Karimzadehkhouei M, Özbey A, Sefiane K, Koşar A (2017) Stick and oscillatory behavior of bubbles due to TiO2 nanoparticle coating in subcooled pool boiling on a wire. Appl Phys Lett 111:1–6. https://doi.org/10.1063/1.4986559

    Article  Google Scholar 

  37. Akbari E, Gheitaghy AM, Saffari H, Hosseinalipour SM (2017) Effect of silver nanoparticle deposition in re-entrant inclined minichannel on bubble dynamics for pool boiling enhancement. Exp Therm Fluid Sci 82:390–401. https://doi.org/10.1016/j.expthermflusci.2016.11.037

    Article  Google Scholar 

  38. Shi J, Jia X, Feng D, Chen Z, Dang C (2020) Wettability effect on pool boiling heat transfer using a multiscale copper foam surface. Int J Heat Mass Transf 146:118726. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118726

    Article  Google Scholar 

  39. Shi J, Feng D, Chen Z (2020) Experimental investigation on pool boiling heat transfer on untreated/ super-hydrophilic metal foam under microgravity. Int J Heat Mass Transf 151:119289. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119289

    Article  Google Scholar 

  40. Hu H, Zhao Y, Lai Z, Hu C (2020) Experimental investigation on nucleate pool boiling heat transfer characteristics on hydrophobic metal foam covers. Appl Therm Eng 179:115730. https://doi.org/10.1016/j.applthermaleng.2020.115730

    Article  Google Scholar 

  41. M. Hemmati (2011) Silver dz nano-fluid composition for nano-fin formation and a method of producing the same Abstract. https://patents.google.com/patent/US20110088593A1/en.

  42. Gheitaghy AM, Saffari H, Mohebbi M (2016) Investigation pool boiling heat transfer in U-shaped mesochannel with electrodeposited porous coating. Exp Therm Fluid Sci 76:87–97. https://doi.org/10.1016/j.expthermflusci.2016.03.011

    Article  Google Scholar 

  43. Gheitaghy AM, Saffari H, Ghasimi D, Ghasemi A (2017) Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement. Appl Therm Eng 113:1097–1106. https://doi.org/10.1016/j.applthermaleng.2016.11.106

    Article  Google Scholar 

  44. Kline SJ, McClintock FA (1953) Describing uncertainties in single sample experiments. ASME Mech Eng 75:3–8

    Google Scholar 

  45. Melendez E, Reyes R (2006) The pool boiling heat transfer enhancement from experiments with binary mixtures and porous heating covers. Exp Therm Fluid Sci 30:185–192. https://doi.org/10.1016/j.expthermflusci.2005.05.005

    Article  Google Scholar 

Download references

Funding

There has been no funding source for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriyar Ghazanfari Holagh.

Ethics declarations

Conflicts of interest

Included-see the last page of the manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, E., Holagh, S.G., Saffari, H. et al. On the effect of silver nanoparticles deposition on porous copper foams on pool boiling heat transfer enhancement: an experimental visualization. Heat Mass Transfer 58, 447–466 (2022). https://doi.org/10.1007/s00231-021-03123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03123-9

Navigation