Skip to main content
Log in

Heat transfer studies of surface synthesized by chemical vapor deposition

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, heat transfer characteristics of nickel coating over aluminium and mild steel are examined using jet impingement cooling. A rectangular sheet of dimension 10 cm × 3.5 cm × 0.1 cm taken as the test piece is coated with 4 g nickel acetate tetrahydrate precursor in the chemical vapor deposition (CVD) process for 85 mins. Heat transfer characteristics are studied on three layers of nickel coating (no coating, first coating, and second coating) with an impinging air-jet velocity of 3.5 ms−1 and 6 ms−1. The effect of Reynolds number, the thickness of the coating, jet velocity, distance from the stagnation point, and nozzle diameter on the heat transfer coefficient are investigated. The results show an increase in convective heat transfer characteristics with the Reynolds number, the thickness of the coating, and the nozzle diameter and a substantial decrease with deviation from the stagnation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

DH :

Hydraulic diameter [m].

v:

Velocity [ms−1].

T:

Temperature [K].

h:

Convective heat transfer coefficient [Wm−2 K−1].

D:

Characteristic length of the body [m].

k:

Thermal conductivity [Wm−1 K−1].

Q:

Heat transfer rate [W].

V:

Voltage [Volts].

I:

Current [Ampere].

Dp :

Particle size [nm].

d:

Nozzle diameter [mm].

x:

Distance from the point of impingement [cm].

K:

Constant related to crystal shape.

CVD:

Chemical vapor deposition

Ni(hfa)2 :

Ni(hexafluoroacetylacetonate)2

Ni(CO)4 :

Nickel Tetracarbonyl

Ni[(acac)2en]:

Nickel bis(acetylacetone) ethylenediamine

Cr(acac)3 :

Chromium (III) acetylacetonate

XRD:

X-Ray diffraction

Nu:

Nusselt number.

Re:

Reynolds Number.

μ:

Dynamic Viscosity [kgm−1 s−1].

ρ:

Fluid density [kgm−3].

λ:

Wavelength of x-ray [Å].

β:

Half peak width of the diffraction peak [radians].

θ:

Angle between diffracted wave and the lattice plane [degrees].

a:

Air.

w:

Wall.

x:

Distance from the wall.

l:

Local.

s:

Stagnation.

References

  1. Fotovvati B, Namdari N, Dehghanghadikolaei A (2019) On coating techniques for surface protection: a review. J Manuf Mater Process 3:28. https://doi.org/10.3390/jmmp3010028

    Article  Google Scholar 

  2. Gu Y, Xia K, Wu D, Mou J, Zheng S (2020) Technical characteristics and wear-resistant mechanism of nano coatings: a review. Coatings 10:233. https://doi.org/10.3390/coatings10030233

    Article  Google Scholar 

  3. Jones AC, Hitchman ML (2009) Overview of chemical vapour deposition. R Soc Chem 1:1–36. https://doi.org/10.1039/9781847558794-00001

    Article  Google Scholar 

  4. Montazer M, Harifi T (2018). Nanofinishing of textile materials. Woodhead Publishing

  5. Yap YK, Zhang D (2014) Physical vapor deposition. In: Bhushan B (ed) Encyclopedia of nanotechnology. Springer Netherlands, Dordrecht, pp 1–8

    Google Scholar 

  6. Habig K-H (1986) Chemical vapor deposition and physical vapor deposition coatings: properties, tribological behavior, and applications. J Vac Sci Technol A Vacuum, Surfaces, Film 4:2832–2843. https://doi.org/10.1116/1.573687

    Article  Google Scholar 

  7. Quinto DT, Santhanam AT, Jindal PC (1988) Mechanical properties, structure and performance of chemically vapor-deposited and physically vapor-deposited coated carbide tools. Mater Sci Eng A 105–106:443–452. https://doi.org/10.1016/0025-5416(88)90729-X

    Article  Google Scholar 

  8. Spear KE (1982) Principles and applications of chemical vapor deposition (CVD). Pure Appl Chem 54:1297–1311. https://doi.org/10.1351/pac198254071297

    Article  Google Scholar 

  9. Sherman A (1987). Chemical vapor deposition for microelectronics: principles, Technology, and Applications 215

  10. Amazawa T, Nakamura H (1986). Selective chemical vapor deposition of aluminum. Conf Solid State Devices Mater 755–756

  11. Sivaram S (1995). Reactor Design for Thermal CVD. In: Chemical Vapor Deposition. Springer, pp. 94–118

  12. Xu Y, Yan X-T (2010) Chemical vapour deposition systems design. In: Chemical vapour deposition: an integrated engineering Design for Advanced Materials. Springer London, London, pp. 73–128

  13. Li N (2011). Chemical vapor deposition of thin film materials for electronic and magnetic applications. University of Alabama Libraries

  14. Lim KH, Lee J, Huh JE, Park J, Lee JH, Lee SE, Kim YS (2017) A systematic study on effects of precursors and solvents for optimization of solution-processed oxide semiconductor thin-film transistors. J Mater Chem C 5:7768–7776. https://doi.org/10.1039/c7tc01779k

    Article  Google Scholar 

  15. Nalwa HS (2001). Handbook of thin films, Five-Volume Set. Elsevier Science

  16. Nickel Institute (2018). Plating: the role of nickel | Nickel Institute. https://www.nickelinstitute.org/about-nickel/plating/. Accessed 3 Mar 2020

  17. Bansa PB (2001). Property characterization of CVD nickel. National Library of Canada= Bibliothèque nationale du Canada

  18. Billah MM, Chen Q (2017) Thermal conductivity of Ni-coated MWCNT reinforced 70Sn-30Bi alloy. Compos Part B Eng 129:162–168. https://doi.org/10.1016/j.compositesb.2017.07.071

    Article  Google Scholar 

  19. De Jesus JC, González I, Quevedo A, Puerta T (2005) Thermal decomposition of nickel acetate tetrahydrate: an integrated study by TGA, QMS and XPS techniques. J Mol Catal A Chem 228:283–291. https://doi.org/10.1016/j.molcata.2004.09.065

    Article  Google Scholar 

  20. Marceau E, Che M, Čejka J, Zukal A (2010) Nickel(II) nitrate vs. acetate: influence of the precursor on the structure and reducibility of Ni/MCM-41 and Ni/Al-MCM-41 catalysts. ChemCatChem 2:413–422. https://doi.org/10.1002/cctc.200900289

    Article  Google Scholar 

  21. Cho HH, Kim KM, Song J (2011) Applications of impingement jet cooling systems. In: Cooling systems: energy. Nova Science Publishers, Inc., Engineering and Applications, pp 37–67

    Google Scholar 

  22. Liu X, Lienhard JH, Lombara JS (1991) Convective heat transfer by impingement of circular liquid jets. In: Journal of Heat Transfer. pp. 571–582

  23. Gulati P, Katti V, Prabhu SV (2009) Influence of the shape of the nozzle on local heat transfer distribution between smooth flat surface and impinging air jet. Int J Therm Sci 48:602–617. https://doi.org/10.1016/j.ijthermalsci.2008.05.002

    Article  Google Scholar 

  24. Colucci DW, Viskanta R (1996) Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp Thermal Fluid Sci 13:71–80. https://doi.org/10.1016/0894-1777(96)00015-5

    Article  Google Scholar 

  25. Li G, Zheng Y, Hu G, Zhang Z (2014) Convective heat transfer enhancement of a rectangular flat plate by an impinging jet in cross flow. Chin J Chem Eng 22:489–495. https://doi.org/10.1016/S1004-9541(14)60060-4

    Article  Google Scholar 

  26. Marzec K, Kucaba-Pietal A (2014). Heat transfer characteristic of an impingement cooling system with different nozzle geometry In: Journal of Physics: Conference Series p 12038

  27. Brissonneau L, Vahlas C (2000). Precursors and operating conditions for the metal-organic chemical vapor deposition of nickel films. In: Annales de Chimie: science des Materiaux. Pp 81–90

  28. Premkumar PA, Dasgupta A, Kuppusami P, Parameswaran P, Mallika C, Nagaraja KS, Raghunathan VS (2006) Synthesis and characterization of Ni and Ni/CrN nanocomposite coatings by plasma assisted metal-organic CVD. Chem Vap Depos 12:39–45. https://doi.org/10.1002/cvde.200506415

    Article  Google Scholar 

  29. Anwarullah M, Rao VV, Sharma KV (2011) Effect of nozzle spacing on heat transfer and fluid flow characteristics of an impinging circular jet in cooling of electronic components. Int J Therm Environ Eng 4:7–12. https://doi.org/10.5383/ijtee.04.01.002

    Article  Google Scholar 

  30. Su LM, Chang SW, Yeh CI, Hsu YC (2003) Heat transfer of impinging air and liquid nitrogen mist jet onto superheated flat surface. Int J Heat Mass Transf 46:4845–4862. https://doi.org/10.1016/S0017-9310(03)00319-3

    Article  Google Scholar 

  31. Zukowski M (2013) Heat transfer performance of a confined single slot jet of air impinging on a flat surface. Int J Heat Mass Transf 57:484–490. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.069

    Article  Google Scholar 

  32. Awbi HB (1998) Calculation of convective heat transfer coefficients of room surfaces for natural convection. Energy Build 28:219–227. https://doi.org/10.1016/s0378-7788(98)00022-x

    Article  Google Scholar 

  33. Upadhyay RK, Kumaraswamidhas LA (2018). Bearing failure issues and corrective measures through surface engineering. In: Handbook of Materials Failure Analysis. Elsevier, pp. 209–233

  34. Rajeshkumar S, Bharath LV, Geetha R (2019) Broad spectrum antibacterial silver nanoparticle green synthesis: characterization, and mechanism of action. In: Green synthesis. Elsevier, Characterization and Applications of Nanoparticles, pp 429–444

    Google Scholar 

  35. Kobayashi H, Kabeya K, Takashima Y, Takahashi H, Takeda G (2018) Effect of nozzle geometry and distance on cooling performance of impinging jets. ISIJ Int 58:1500–1509. https://doi.org/10.2355/isijinternational.ISIJINT-2018-133

    Article  Google Scholar 

  36. Yasaswy NS, Saroj S, Hindasageri V, Prabhu SV (2014) Local heat transfer distribution of an impinging air jet through a crossflow. Int J Therm Sci 79:250–259. https://doi.org/10.1016/j.ijthermalsci.2014.01.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalaichelvi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhasuru, V.K., Varshney, S., Agarwal, Y. et al. Heat transfer studies of surface synthesized by chemical vapor deposition. Heat Mass Transfer 56, 3229–3241 (2020). https://doi.org/10.1007/s00231-020-02931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02931-9

Keywords

Navigation