Skip to main content
Log in

Assessment of the inclination surface on the microlayer behavior during nucleate boiling, a numerical study

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Nucleate boiling is an important part of pool boiling process. Heat transfer from the microlayer plays a considerable role in heat transfer to the fluid. The axisymmetric assumption of the microlayer for a horizontal surface needs to be evaluated for an inclined one. In this study, the effect of surface orientation on the microlayer thickness and the heat transfer rate are investigated numerically. The governing equations are simplified employing scaling analysis. The results for the microlayer thickness, the heat flux and the total heat transfer rate for the heated surface are obtained and presented. The asymmetry of the microlayer increases as the surface inclination angle varies from horizontal to vertical. Even though, the driving force due to gravity in the microlayer is negligible, however its effect on the macro region changes the microlayer parameters. The results show that the maximum microlayer heat transfer rate for the vertical surface increases by 28.8% compared to that for a horizontal surface. The proposed model, which is capable of evaluating the microlayer thickness and its surface heat transfer rate, can be employed as a surface boundary condition in the macro region simulations of the nucleate boiling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Hamaker constant J

а 1 :

Evaporation coefficient

g :

Acceleration of gravity m/s2

h :

Latent heat kJ/ kg

K :

Interface curvature 1/m

k :

Thermal conductivity W/m.K

M :

Molecular weight g/mol

\( \dot{m} \) :

Liquid mass flow rate kg/s

R :

Microlayer length mm

r :

Distance from bubble base center mm

\( \tilde{R} \) :

Universal gas constant J/mol.K

T :

Temperature K

∆T :

Temperature difference K

u :

Liquid velocity m/s

P :

Microlayer pressure Pa

dP/dr :

Pressure gradient N/m3

\( \dot{Q} \) :

Microlayer heat transfer rate W

q :

Microlayer conduction heat flux W/m2

α :

Inclination of heated surface

β :

Contact angle

δ :

Microlayer thickness mm

θ :

Tangential direction

μ :

Viscosity kg /(m·s)

ρ :

Density kg/m3

σ :

Surface tension N/m

c :

Capillary

con :

Conduction

d :

Disjoining

g :

Gravity

i :

Inner

int :

Liquid-vapor interface

l :

Liquid

o :

Outer

r :

Radial direction

sat :

Saturation

sub :

Subcooled

sup :

Superheat

θ :

Tangential direction

v :

Vapor

w :

Wall

z :

Axial direction

0 :

Horizontal surface

References

  1. Judd R, Hwang K (1976) A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. ASME Journal of Heat Transfer 98(4):623–629

    Article  Google Scholar 

  2. Carey VP (1992) Liquid-vapor phase-change phenomena: An introduction to the thermophysics of vaporization and condensation in heat transfer equipment: An introduction. Taylor & Francis, Lincoln

    Google Scholar 

  3. Incropera FP, Dewitt DP (1985) Fundamentals of heat and mass transfer, 2th edn. John Wiley & Sons, Inc., Hoboken

    Google Scholar 

  4. Marcel C, Bonetto F, Clausse A (2011) Simulation of boiling heat transfer in small heaters by a coupled cellular and geometrical automata. Heat Mass Transf 47(1):13–25

    Article  Google Scholar 

  5. Marcel C, Clausse A, Frankiewicz C, Betz A, Attinger D (2017) Numerical investigation into the effect of surface wettability in pool boiling heat transfer with a stochastic-automata model. Int J Heat Mass Transf 111:657–665

    Article  Google Scholar 

  6. Cooper M, Lloyd A (1969) The microlayer in nucleate pool boiling. Int J Heat Mass Transf 12(8):895–913

    Article  Google Scholar 

  7. Stephan P, Hammer J (1994) A new model for nucleate boiling heat transferEin neues Modell für den Wärmeübergang beim Blasensieden. Int J Heat Mass Transf 30(2):119–125

    Google Scholar 

  8. Chi-Yeh H, Griffith P (1965) The mechanism of heat transfer in nucleate pool boiling—Part I: Bubble initiaton, growth and departure. Int J Heat Mass Transf 8(6):887–904

    Article  MATH  Google Scholar 

  9. Yabuki T, Nakabeppu O (2014) Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor. Int J Heat Mass Transf 76:286–297

    Article  Google Scholar 

  10. Moore FD, Mesler RB (1961) The measurement of rapid surface temperature fluctuations during nucleate boiling of water. AICHE J 7(4):620–624

    Article  Google Scholar 

  11. Hsu ST, Schmidt FW (1961) Measured variations in local surface temperatures in pool boiling of water. ASME Journal of Heat Transfer 83(3):254–260

    Article  Google Scholar 

  12. Jawurek H (1969) Simultaneous determination of microlayer geometry and bubble growth in nucleate boiling. Int J Heat Mass Transf 12(8)

  13. Voutsinos CM, Judd RL (1975) Laser interferometric investigation of the microlayer evaporation phenomenon. ASME Journal of Heat Transfer 97(1):88–92

    Article  Google Scholar 

  14. Koffman LD, Plesset MS (1983) Experimental observations of the microlayer in vapor bubble growth on a heated solid. ASME Journal of Heat Transfer 105(3):625–632

    Article  Google Scholar 

  15. Jung S, Kim H (2014) An experimental method to simultaneously measure the dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. Int J Heat Mass Transf 73:365–375

    Article  Google Scholar 

  16. Stephan PC, Busse CA (1992) Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int J Heat Mass Transf 35(2):383–391

    Article  Google Scholar 

  17. Lay JH, Dhir VK (1995) Shape of a vapor stem during nucleate boiling of saturated liquids. ASME Journal of Heat Transfer 117:394–394

    Article  Google Scholar 

  18. Son G, Dhir VK, Ramanujapu N (1999) Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. ASME Journal of Heat Transfer 121:623–631

    Article  Google Scholar 

  19. Aktinol E (2014) Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Boiling--Including the Effects of Conjugate Conduction, Level of Gravity, and Noncondensable Gas Dissolved in the Liquid. University of California, Los Angeles, Los Angeles

    Google Scholar 

  20. Wu J, Dhir VK, Qian J (2007) Numerical simulation of subcooled nucleate boiling by coupling level-set method with moving-mesh method. Numerical Heat Transfer, Part B: Fundamentals 51(6):535–563

    Article  Google Scholar 

  21. Sato Y, Niceno B (2015) A depletable micro-layer model for nucleate pool boiling. J Comput Phys 300:20–52

    Article  MathSciNet  MATH  Google Scholar 

  22. Kunkelmann C, Stephan P (2010) Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100. Int J Refrig 33(7):1221–1228

    Article  Google Scholar 

  23. Stephan K (1992) Heat transfer in condensation and boiling. Springer, Berlin

    Book  Google Scholar 

  24. Naterer GF, Hendradjit W, Ahn KJ, Venart JES (1998) Near-wall microlayer evaporation analysis and experimental study of nucleate pool boiling on inclined surfaces. J Heat Transf 120(3):641–653

    Article  Google Scholar 

  25. Githinji PM, Sabersky RH (1963) Some effects of the orientation of the heating surface in nucleate boiling. ASME Journal of Heat Transfer 85(4):379–379

    Article  Google Scholar 

  26. Marcus B, Dropkin D (1963) The effect of surface configuration on nucleate boiling heat transfer. Int J Heat Mass Transf 6(9):863–866

    Article  Google Scholar 

  27. Vishnev IP (1973) Effect of orienting the hot surface with respect to the gravitational field on the critical nucleate boiling of a liquid. J Eng Phys Thermophys 24(1):43–48

    Article  Google Scholar 

  28. El-Genk MS, Guo Z (1993) Transient boiling from inclined and downward-facing surfaces in a saturated pool. Int J Refrig 16(6):414–422

    Article  Google Scholar 

  29. Priarone A (2005) Effect of surface orientation on nucleate boiling and critical heat flux of dielectric fluids. Int J Therm Sci 44(9):822–831

    Article  Google Scholar 

  30. Kaneyasu N, Yasunobu F, Satoru U (1984) Effect of surface configuration on nucleate boiling heat transfer. Int J Heat Mass Transf 27(9):1559–1571

    Article  Google Scholar 

  31. Guo Z, El-Genk MS (1992) An experimental study of saturated pool boiling from downward facing and inclined surfaces. Int J Heat Mass Transf 35(9):2109–2117

    Article  Google Scholar 

  32. Wayner PC (1992) Evaporation and stress in the contact line region. Proceedings of the Engineering Foundation Conference on Pool and External Flow Boiling: 251-256

  33. Hickman KCD (1954) Maximum evaporation coefficient of water. Ind Eng Chem 46(7):1442–1446

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Maddahian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$ {A}_1={h}_{ev}{\rho}_v{h}_{fg}+\frac{k_l}{\delta}\kern0.5em {P}_1={\rho}_v{h}_{fg}{T}_v\kern0.5em {K}_1=\frac{\sigma {\delta}^{{\prime\prime} }}{{\left({\delta^{\prime}}^2+1\right)}^{5/2}} $$
$$ {A}_2=3\sigma {\delta^{{\prime\prime}}}^2\frac{\delta^{\prime }}{{\left({\delta^{\prime}}^2+1\right)}^{5/2}}\kern0.5em {p}_g=g\sin \alpha \left({\rho}_l-{\rho}_v\right)\left(\delta -{\delta}_e\right)\kern0.5em {h}_{ev}={a}_1{h}_{fg}\sqrt{\frac{M}{2\pi R{T}_{sat}^3}} $$
$$ {A}_3=\frac{1}{{\left({\delta^{\prime}}^2+1\right)}^{3/2}}\kern0.5em {p}_d=\frac{A}{\delta^3}\kern0.5em {P}_1={\rho}_v{h}_{fg}{T}_v $$
$$ {A}_4=\frac{1}{{\left({\delta^{\prime}}^2+1\right)}^{7/2}}\kern0.5em {C}_1=\frac{\mu_l{p}_v}{\rho_vR}\kern0.5em {P}_2=g{p}_1-{K}_1-{p}_d $$
$$ {A}_5=\frac{h_{ev}\left(-{C}_1{P}_2+{P}_1\right)+\frac{k_l{T}_w}{\delta }}{A_1}\kern0.5em {C}_2=\frac{1}{\rho_v{h}_{fg}^2}\kern0.5em {C}_3={\rho}_v{h}_{fg} $$
$$ {A}_6={\rho}_v{h}_{fg}\left({A}_5-{T}_v\right)+{C}_1{P}_1\kern0.5em {A}_7={h}_{ev}\left(-{C}_1{P}_2+{P}_1\right)+\frac{k_l{T}_w}{\delta}\kern0.5em {A}_8=\frac{9\sigma {\delta}^{{\prime\prime\prime} }{\delta}^{{\prime\prime} }{\delta}^{\prime }}{{\left({\delta^{\prime}}^2+1\right)}^{5/2}} $$
$$ {A}_9=-\frac{15\sigma {\delta^{{\prime\prime}}}^3{\delta^{\prime}}^2}{{\left({\delta^{\prime}}^2+1\right)}^{7/2}}\kern0.5em {A}_{10}=\frac{3\sigma {\delta^{{\prime\prime}}}^3}{{\left({\delta^{\prime}}^2+1\right)}^{5/2}}\kern0.5em {A}_{11}=g\left({\rho}_l-{\rho}_v\right){\delta}^{{\prime\prime} } $$
$$ {A}_{12}=-\frac{12A{\delta^{{\prime\prime}}}^2}{\delta^5}\kern0.5em {A}_{13}=\frac{3A{\delta}^{{\prime\prime} }}{\delta^4}\kern0.5em {A}_{14}=g\left({\rho}_l-{\rho}_v\right){\delta}^{\prime } $$
$$ {A}_{15}=\frac{3A{\delta}^{\prime }}{\delta^4}\kern0.5em {A}_{16}=-\frac{\sigma {\delta}^{{\prime\prime\prime} }}{{\left({\delta^{\prime}}^2+1\right)}^{5/2}}+{A}_2+{A}_{14}+{A}_{15} $$
$$ {A}_{17}={A}_8+{A}_9+{A}_{10}+{A}_{11}+{A}_{12}+{A}_{13}\kern0.5em {A}_{18}=-{h}_{ev}{C}_1{A}_{16}-\frac{k_l{T}_w{\delta}^{\prime }}{\delta^2} $$
$$ {A}_{19}=\frac{h_{ev}^2{A}_6\Big({\rho}_v{h}_{fg}\left(\frac{A_{18}}{A_1}+\frac{\delta^{\prime }{k}_l{A}_7}{\delta^2{A}_1^2}+{C}_1{A}_{16}\right)}{\rho_v{h}_{fg}^2} $$
$$ {A}_{20}=\frac{1}{2}\left({A}_2-{A}_{19}+{A}_{15}-{A}_{16}\right)-\frac{3}{2}\left(\frac{\sigma {\delta^{{\prime\prime}}}^3{\delta}^{\prime }}{{\left({\delta^{\prime}}^2+1\right)}^{5/2}}+\frac{A{\delta}^{\prime }}{\delta^4}\right)+\frac{1}{2}{\rho}_lg\sin \alpha \cos \varphi $$
$$ {A}_{21}=\frac{2{\delta}^{\prime }{k}_l}{\delta^2{A}_1^2}\left({A}_{18}+\frac{\delta^{\prime }{k}_l{A}_7}{\delta^2{A}_1}-\frac{\delta^{\prime }{A}_7}{\delta }+{\delta}^{{\prime\prime} }{A}_7\right) $$
$$ {A}_{22}=\frac{6A{\delta^{\prime}}^2}{\delta^5}-\frac{3}{2}\frac{A{\delta}^{{\prime\prime} }}{\delta^4}-\frac{1}{2}{A}_{11}\kern0.5em {\mathrm{A}}_{23}=-\frac{9}{2}\frac{\sigma {\delta}^{{\prime\prime} }{\delta}^{{\prime\prime} }{\delta}^{\prime }}{{\left({\delta^{\prime}}^2+1\right)}^{5/2}}\kern0.5em {\mathrm{A}}_{24}=\frac{2{k}_l{\mathrm{T}}_{\mathrm{w}}{\delta^{\prime}}^2}{\delta^3} $$
$$ {\mathrm{A}}_{25}=-\frac{k_l{\mathrm{T}}_{\mathrm{w}}{\delta}^{{\prime\prime} }}{\delta^2}\kern0.5em {\mathrm{A}}_{26}=3\left({\mathrm{A}}_{16}+{\mathrm{A}}_{19}\right)+{2\mathrm{A}}_{20}-3{\rho}_lg\sin \alpha \cos \varphi $$
$$ {A}_{27}=\frac{1}{3}\frac{C_1{A}_1^2{A}_{26}{\delta}^2+3{\rho}_v{h}_{fg}{A}_1{A}_{18}{\delta}^2+3{\rho}_v{h}_{fg}{k}_l{A}_7{\delta}^{\prime }}{A_1^2{\delta}^2} $$
$$ {A}_{28}=\frac{h_{ev}^2\Big({\rho}_v{h}_{fg}{\left(\frac{A_{18}}{A_1}+\frac{\delta^{\prime }{k}_l{A}_7}{\delta^2{A}_1^2}+{C}_1{A}_{16}\right)}^2}{\rho_v{h}_{fg}^2} $$
$$ {A}_{29}={A}_{17}{\left({\delta^{\prime}}^2+1\right)}^{3/2}\kern0.5em {A}_{30}=-\frac{1}{2}\frac{A_{26}{\delta}^2{\delta}^{\prime }}{\mu_l}\kern0.5em {A}_{31}=-\frac{1}{6}\frac{A_{26}{\delta}^3}{\mu_l} $$
$$ {A}_{32}=-\frac{r\left({A}_5-{T}_w\right){k}_l}{\rho_l{h}_{fg}\delta}\kern0.5em {A}_{33}={A}_1{A}_{21}+{A}_{24}+{A}_{25}-{A}_{29}{A}_3{C}_1{h}_{ev} $$
$$ {A}_{34}=-3{\delta^{{\prime\prime}}}^3\left({\delta^{\prime}}^2+1\right)\kern0.5em {A}_{35}=15{\delta^{{\prime\prime}}}^3{\delta^{\prime}}^2\kern0.5em {A}_{36}={C}_1{A}_1{A}_{29}{A}_3+{C}_3{A}_{35} $$

Appendix 2

Macro region equations:

The macro region equations including continuity, momentum and energy equations are defined as follows:

$$ \frac{\partial \rho }{\partial t}+\nabla \cdot \left(\rho u\right)={\dot{m}}_{masstransfer}, $$
(1)
$$ \frac{\partial \left(\rho u\right)}{\partial t}+\nabla \cdot \left(\rho\;u\;u\right)=-\nabla p+\nabla \cdot \left[\mu \left(\nabla u+\nabla {u}^T\right)\right]+\rho g+{F}_{\sigma }, $$
(2)
$$ \frac{\partial \left(\rho E\right)}{\partial t}+\nabla \cdot \left(u\left(\rho E+p\right)\right)=\nabla \cdot \left[{k}_{eff}\left(\nabla T\right)\right]+{S}_h, $$
(3)

The additional equation for tracking the interphase between the phases is the continuity equation for the volume fraction of one of the phases.

$$ \frac{\partial \left(\rho \alpha \right)}{\partial t}+\nabla \cdot \left(\rho u\;\alpha \right)={\dot{m}}_{mass\kern0.17em transfer}, $$
(4)

The mass transfer between phases has two parts. The first part is due to the overall mass transfer of vaporization around the bubble perimeter. The second part is due to the effect of microlayer. The first part is accounted by the employed boiling model automatically, while the second part should be added to the model. Following the method introduced by Son et al. [18], the additional mass transfer due to the microlayer (\( \rho {\dot{V}}_{micro} \)) is defined as follows:

$$ {\dot{V}}_{micro}=\underset{R_0}{\overset{R_l}{\int }}\frac{k_1\left({T}_w-{T}_{\mathrm{int}}\right)}{\rho_v{h}_{fg}\delta \varDelta {V}_{micro}} rdr. $$
(5)

Equation (5) is considered as a source term in the continuity equation of vapor phase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdoli Tondro, A.A., Maddahian, R. & Arefmanesh, A. Assessment of the inclination surface on the microlayer behavior during nucleate boiling, a numerical study. Heat Mass Transfer 55, 2103–2116 (2019). https://doi.org/10.1007/s00231-019-02566-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-019-02566-5

Navigation