Skip to main content
Log in

OpenFOAM based LES of slot jet impingement heat transfer at low nozzle to plate spacing using four SGS models

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The objective of the present investigation is to assess the effectiveness of large eddy simulation (LES) in turbulent slot jet impingement heat transfer at low nozzle to plate spacing. Four different sub-grid stress (SGS) models, namely, Smagorinsky, WALE (wall adapting local eddy-viscosity), k-equation and dynamic k-equation, were considered for Reynolds number of 20,000. Computations were performed using OpenFOAM, an open source finite-volume based CFD code. Time and span-wise averaged mean streamwise velocity and root mean square (r.m.s.) velocity fluctuations in the stagnation and wall jet regions are presented. Nusselt number distributions on the impingement wall are also presented. The computed LES results are compared with the reported experimental data. A secondary peak in the Nusselt number was observed using the four SGS models as in the experimental data. LES of slot jet impingement heat transfer using four SGS models, including WALE, has been investigated for the first time in the present paper. It is observed that the WALE and dynamic k-equation SGS models perform well in complex flow regions of turbulent slot jet impingement heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

B :

Slot width

e :

Internal energy

h :

Heat transfer coefficient (W/m2-K)

H :

Height between nozzle to plate

H/B :

Normalized nozzle to plate spacing

Re :

Reynolds number (ρUB/μ)

k :

Turbulence kinetic energy

k a :

Thermal conductivity (W/m-K)

k SGS :

Sub-grid scale turbulence kinetic energy

Nu :

Nusselt number (hB/k)

P :

Mean pressure

Pr :

Prandtl number

\( {q}_{t_k} \) :

Turbulent heat flux

S :

STRAIN rate tensor

T :

Sub-grid stress tensor

T :

Mean temperature

t * :

Non dimensional time unit

U :

Mean velocity

u’ :

r.m.s. streamwise velocity fluctuation

V o :

Velocity at jet inlet

x,y,z :

Coordinate directions

Ω :

Vorticity magnitude

ε SGS :

Sub-grid scale dissipation

ν SGS :

Sub-grid scale kinematic viscosity

:

Grid size

μ :

Dynamic viscosity (kg/s-m)

i, j, k :

Index notation

0 :

Quantities at the inlet

SGS :

Sub-grid scale

eff :

Effective

t :

Turbulent

a :

Air

st :

Stagnation

+ :

Normalized quantity in wall coordinates

References

  1. Jambunathan K, Lai E, Moss MA, Button BL (1992) A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow 13:106–115. https://doi.org/10.1016/0142-727X(92)90017-4

    Article  Google Scholar 

  2. Shukla A, Dewan A (2017) Flow and thermal characteristics of jet impingement: comprehensive review. Int J of Heat and Tech 35:153–166. https://doi.org/10.18280/ijht.350121

    Article  Google Scholar 

  3. Ashforth-Frost S, Jambunathan K, Whitney CF (1997) Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet. Exp Thermal Fluid Sci 14:60–67. https://doi.org/10.1016/S0894-1777(96)00112-4

    Article  Google Scholar 

  4. Hoogendoorn CJ (1977) The effect of turbulence on heat transfer at a stagnation point. Int J Heat Mass Transf 20:1333–1338. https://doi.org/10.1016/0017-9310(77)90029-1

    Article  Google Scholar 

  5. Lytle D, Webb BW (1994) Air jet impingement heat transfer at low nozzle-plate spacings. Int J Heat Mass Transf 31:1687–1697. https://doi.org/10.1016/0017-9310(94)90059-0

    Article  Google Scholar 

  6. Zhe J, Modi V (2001) Near wall measurements for a turbulent impinging slot jet. J Fluids Eng 123:112–120. https://doi.org/10.1115/1.1343085

    Article  Google Scholar 

  7. O’Donovan TS, Murray DB (2007) Jet impingement heat transfer - Part I: Mean and root- mean-square heat transfer and velocity distributions. Int J Heat Mass Transf 50:3291–3301. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.044

    Article  MATH  Google Scholar 

  8. Dutta R, Dewan A, Srinivasan B (2016) Large eddy simulation of turbulent slot jet impingement heat transfer at small nozzle-to-plate spacing. Heat Transfer Eng 37:1242–1251. https://doi.org/10.1080/01457632.2015.1119592

    Article  Google Scholar 

  9. Dutta R, Dewan A, Srinivasan B (2013) Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer. Int J Heat Mass Transf 65:750–764. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.056

    Article  Google Scholar 

  10. Baydar E, Ozmen Y (2005) An experimental and numerical investigation on a confined impinging air jet at high Reynolds numbers. Appl Therm Eng 25:409–421. https://doi.org/10.1016/j.althermaleng.2004.05.016

    Article  Google Scholar 

  11. Al-Sanea S (1992) A numerical study of the flow and heattransfer characteristics of an impinging laminar slot-jet including crossflow effects. Int J Heat Mass Transf 35:2501–2513. https://doi.org/10.1016/0017-9310(92)90092-7

    Article  Google Scholar 

  12. Yang Y-T, Tsai S-Y (2007) Numerical study of transient conjugate heat transfer of a turbulent impinging jet. Int J Heat Mass Transf 50:799–807. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.022

    Article  MATH  Google Scholar 

  13. Viskanta R (1993) Heat transfer to impinging isothermal gas and flame jets. Exp Thermal Fluid Sci 6:111–134. https://doi.org/10.1016/0894-1777(93)90022-B

    Article  Google Scholar 

  14. Zuckerman N, Lior N (2005) Impingement heat transfer: correlations and numerical modeling. J Heat Transf 127:544–552. https://doi.org/10.1115/1.1861921

    Article  Google Scholar 

  15. Olsson M, Fuchs L (1998) Large eddy simulations of a forced semiconfined circular impinging jet. Phys Fluids 10:476–486. https://doi.org/10.1063/1.869535

    Article  Google Scholar 

  16. Cziesla T, Biswas G, Chattopadhyay H, Mitra NKK (2001) Large-eddy simulation of flow and heat transfer in an impinging slot jet. Int J Heat Fluid Flow 22:500–508. https://doi.org/10.1016/S0142-727X(01)00105-9

    Article  Google Scholar 

  17. Beaubert F, Viazzo S (2002) Large eddy simulation of a plane impinging jet. Cr Mecanique 330:803–810. https://doi.org/10.1016/S1631-0721(02)01537-1

    Article  MATH  Google Scholar 

  18. Beaubert F, Viazzo S (2003) Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers. Int J Heat Fluid Flow 24:512–519. https://doi.org/10.1016/S0142-727X(03)00045-6

    Article  Google Scholar 

  19. Icardi M, Gavi E, Marchisio DL, Olsen MG, Fox RO, Lakehal D (2011) Validation of LES predictions for turbulent flow in a confined impinging jets reactor. Appl Math Model 35:1591–1602. https://doi.org/10.1016/j.apm.2010.09.035

    Article  MATH  Google Scholar 

  20. Kubacki S, Dick E (2010) Simulation of plane impinging jets with k–ω based hybrid RANS/LES models. Int J Heat Fluid Flow 31:862–878. https://doi.org/10.1016/j.ijheatfluidflow.2010.04.011

    Article  Google Scholar 

  21. Heyerichs K, Pollard A (1996) Heat transfer in separated and impinging turbulent flows. Int J Heat Mass Transf 39:2385–2400. https://doi.org/10.1016/0017-9310(95)00347-9

    Article  MATH  Google Scholar 

  22. Jaramillo JE, Trias FX, Gorobets A, Pérez-Segarra CD, Oliva A (2012) DNS and RANS modelling of a turbulent plane impinging jet. Int J Heat Mass Transf 55:789–801. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.031

    Article  MATH  Google Scholar 

  23. Kubacki S, Rokicki J, Dick E (2013) Hybrid RANS/LES computations of plane impinging jets with DES and PANS models. Int J Heat Fluid Flow 44:596–609. https://doi.org/10.1016/j.ijheatfluidflow.2013.08.014

    Article  Google Scholar 

  24. Uddin N, Neumann SO, Weigand B (2013) LES simulations of an impinging jet: on the origin of the second peak in the Nusselt number distribution. Int J Heat Mass Transf 57:356–368. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.052

    Article  Google Scholar 

  25. Gao S, Voke PR (1995) Large-eddy simulation of turbulent heat transport in enclosed impinging jets. Int J Heat Fluid Flow 16:349–356. https://doi.org/10.1016/0142-727X(95)00050-Z

    Article  Google Scholar 

  26. Lodato G, Vervisch L, Domingo P (2009) A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet. Phys Fluids 21:1–21. https://doi.org/10.1063/1.3068761

    Article  MATH  Google Scholar 

  27. Dairay T, Fortuné V, Lamballais E, Brizzi LE (2014) LES of a turbulent jet impinging on a heated wall using high-order numerical schemes. Int J Heat Fluid Flow 50:177–187. https://doi.org/10.1016/j.ijheatfluidflow.2014.08.001

    Article  Google Scholar 

  28. Sagaut P (2006) Large eddy simulation for incompressible flows: an introduction. Springer-Verlag, Berlin Heidelberg

  29. Ferziger JH, Peric M (2002) Computational methods for fluid dynamics. Springer-Verlag, Berlin Heidelberg

  30. Sohankar A, Davidson L, Norberg C (1999) A dynamic one-equation subgrid model for simulation of flow around a square cylinder. Engineering Turbulence Modelling and Experiments 4:227–236. https://doi.org/10.1016/B978-008043328-8/50021-7

    Article  MATH  Google Scholar 

  31. Smagorinsky J (1963) General circulation experiments with the primitive equations: I The basic experiment*. Mon Weather Rev 91:99–164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

    Article  Google Scholar 

  32. Nicoud F, Ducros F (1999) Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul Combust 62:183–200. https://doi.org/10.1023/A:1009995426001

    Article  MATH  Google Scholar 

  33. Yoshizawa A (1986) Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys Fluids 29(1958–1988):2152–2164. https://doi.org/10.1063/1.865552

    Article  MATH  Google Scholar 

  34. Javed T, Md Mizanur R, Timos S, Ramesh KA (2015) One-equation sub-grid scale model with variable eddy viscosity coefficient. Comput Fluids 107:155–164. https://doi.org/10.1016/j.compfluid.2014.10.014

    Article  MathSciNet  MATH  Google Scholar 

  35. Kim W, Menon, S (1995) A new dynamic one-equation subgrid-scale model for large eddy simulation. In 33rd Aerospace Sciences Meeting and Exhibit, Reno, NV. https://doi.org/10.2514/6.1995-356

  36. Shukla AK, Dewan A (2017) Convective heat transfer enhancement using slot jet impingement on a detached rib surface. J Appl Fluid Mech 10:1615–1627. https://doi.org/10.18869/acadpub.jafm.73.243.27685

    Article  Google Scholar 

  37. Celik I, Cehreli ZN, Yavuz I (2005) Index of Resolution Quality for Large Eddy Simulations. J Fluids Eng 127:949–958. https://doi.org/10.1115/1.1990201

    Article  Google Scholar 

  38. Nicoud F, Toda HB, Cabrit O, Bose S, Lee J (2011) Using singular values to build a subgrid-scale model for large eddy simulations. Phys Fluids 23. https://doi.org/10.1063/1.3623274

Download references

Acknowledgements

The authors acknowledge the HPC facility of Indian Institute of Technology Delhi for computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Dewan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A.K., Dewan, A. OpenFOAM based LES of slot jet impingement heat transfer at low nozzle to plate spacing using four SGS models. Heat Mass Transfer 55, 911–931 (2019). https://doi.org/10.1007/s00231-018-2470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2470-8

Keywords

Navigation