Skip to main content

Advertisement

Log in

Numerical investigation of efficiency and economic analysis of an evacuated U-tube solar collector with different nanofluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, an evacuated U-tube tube solar collector (EUSC) was designed and simulated numerically. The thermal performance of the EUSC was analyzed under different operating conditions. In order to enhance the heat transfer efficiency and also collector efficiency, higher thermal conductivity working fluids were used. Ag, ZnO and MgO nanoparticles in 30%:70% (by volume) ethylene glycol-pure water (EG-PW) mixture and different nanoparticle volumetric concentrations were used as working fluids. The highest collector efficiency is found at 68.7% for 4.0 vol% Ag/EG-PW nanofluid which is 26.7% higher than EG–PW. Furthermore, using nanofluids in solar collectors helps to reduce the coal usage with CO2 and SO2 generation. The maximum values of reduction of coal usage and CO2 and SO2 generation are 855.5 kg, 2241.4 kg and 7.2 kg per year, respectively, when 30 solar collectors are installed with using 4.0 vol% Ag/EG-PW nanofluid. These findings reveal that the using of solar energy comprehensively is more beneficial for health of earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Thirugnanasambandam M, Iniyan S, Goic R (2010) A review of solar thermal technologies. Renew Sust Energ Rev 14:312–322. https://doi.org/10.1016/j.rser.2009.07.014

    Article  Google Scholar 

  2. Gao Y, Fan R, Zhang XY, An YJ, Wang MX, Gao YK, Yu Y (2014) Thermal performance and parameter analysis of a U-pipe evacuated solar tube collector. Sol Energy 107:714–727. https://doi.org/10.1016/j.solener.2014.05.023

    Article  Google Scholar 

  3. Kim Y, Seo T (2007) Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube. Renew Energy 32:772–795. https://doi.org/10.1016/j.renene.2006.03.016

    Article  Google Scholar 

  4. Li Y, Fernández-Seara J, Du K, Pardiñas ÁÁ, Latas LL, Jiang W (2016) Experimental investigation on heat transfer and pressure drop of ZnO/ethylene glycol-water nanofluids in transition flow. Appl Therm Eng 93:537–548. https://doi.org/10.1016/j.applthermaleng.2015.09.020

    Article  Google Scholar 

  5. Hamid KA, Azmi WH, Mamat R, Sharma KV (2016) Experimental investigation on heat transfer performance of TiO2 nanofluids in water-ethylene glycol mixture. Int Commun Heat Mass Transf 73:16–24. https://doi.org/10.1016/j.icheatmasstransfer.2016.02.009

    Article  Google Scholar 

  6. Xu J, Bandyopadhyay K, Jung D (2016) Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol-water mixture. Int J Heat Mass Transf 94:262–268. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.056

    Article  Google Scholar 

  7. Cabaleiro D, Pastoriza-Gallego MJ, Pineiro MM, Lugo L (2013) Characterization and measurements of thermal conductivity, density and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1,2-diol + water) mixture. J Chem Thermodyn 58:405–415. https://doi.org/10.1016/j.jct.2012.10.014

    Article  Google Scholar 

  8. Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energy 39:293–298. https://doi.org/10.1016/j.renene.2011.08.056

    Article  Google Scholar 

  9. Yousefi T, Veisy F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of MWCNT-H2O nanofluid on the efficiency of flat-plate solar collectors. Exp Thermal Fluid Sci 39:207–212. https://doi.org/10.1016/j.expthermflusci.2012.01.025

    Article  Google Scholar 

  10. Said Z, Sajid MH, Alim MA, Saidur R, Rahim NA (2013) Experimental investigation of the thermophysical properties of AL2O3-nanofluid and its effect on a flat plate solar collector. Int Commun Heat Mass Transf 48:99–107. https://doi.org/10.1016/j.icheatmasstransfer.2013.09.005

    Article  Google Scholar 

  11. Sokhansefat T, Kasaeian A (2012) Numerical Study of Heat Transfer Enhancement by using Al2O3 / Synthetic Oil Nanofluid in a Parabolic Trough Collector Tube, in: World Acad. Sci Eng Technol 69:1154–1159

    Google Scholar 

  12. Kalogirou SA (2004) Solar thermal collectors and applications. Prog Energy Combust Sci 30:231–295. https://doi.org/10.1016/j.pecs.2004.02.001

    Article  Google Scholar 

  13. Colangelo G, Favale E, De Risi A, Laforgia D (2013) A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Appl Energy 111:80–93. https://doi.org/10.1016/j.apenergy.2013.04.069

    Article  Google Scholar 

  14. Moghadam AJ, Farzane-Gord M, Sajadi M, Hoseyn-Zadeh M (2014) Effects of CuO/water nanofluid on the efficiency of a flat-plate solar collector. Exp Thermal Fluid Sci 58:9–14. https://doi.org/10.1016/j.expthermflusci.2014.06.014

    Article  Google Scholar 

  15. Faizal M, Saidur R, Mekhilef S (2013) Potential of size reduction of flat-plate solar collectors when applying MWCNT nanofluid. IOP Conf Ser Earth Environ Sci 16:012004. https://doi.org/10.1088/1755-1315/16/1/012004

    Article  Google Scholar 

  16. Mahian O, Kianifar A, Sahin AZ, Wongwises S (2014) Performance analysis of a minichannel-based solar collector using different nanofluids. Energy Convers Manag 88:129–138. https://doi.org/10.1016/j.enconman.2014.08.021

    Article  Google Scholar 

  17. Gao Y, Zhang Q, Fan R, Lin X, Yu Y (2013) Effects of thermal mass and flow rate on forced-circulation solar hot-water system: Comparison of water-in-glass and U-pipe evacuated-tube solar collectors. Sol Energy 98:290–301. https://doi.org/10.1016/j.solener.2013.10.014

    Article  Google Scholar 

  18. Liang RB, Zhang JL, Zhao L, Ma LD (2015) Performance enhancement of filled-type solar collector with U-tube. J Cent South Univ 22:1124–1131. https://doi.org/10.1007/s11771-015-2624-5

    Article  Google Scholar 

  19. Liang R, Ma L, Zhang J, Zhao D (2011) Theoretical and experimental investigation of the filled-type evacuated tube solar collector with U tube. Sol Energy 85:1735–1744. https://doi.org/10.1016/j.solener.2011.04.012

    Article  Google Scholar 

  20. Liang R, Ma L, Zhang J, Zhao L (2013) Performance analysis of a new-design filled-type solar collector with double U-tubes. Energy Build 57:220–226. https://doi.org/10.1016/j.enbuild.2012.11.004

    Article  Google Scholar 

  21. Liang R, Zhang J, Zhao L, Ma L (2014) Research on the universal model of filled-type evacuated tube with U-tube in uniform boundary condition. Appl Therm Eng 63:362–369. https://doi.org/10.1016/j.applthermaleng.2013.11.020

    Article  Google Scholar 

  22. Ma L, Zhao T, Zhang J, Zhao D (2016) Numerical study on the heat transfer characteristics of filled-type solar collector with U-tube. Appl Therm Eng 107:642–652. https://doi.org/10.1016/j.applthermaleng.2016.05.133

    Article  Google Scholar 

  23. Alfaro-Ayala JA, Martínez-Rodríguez G, Picón-Núñez M, Uribe-Ramírez AR, Gallegos-Muñoz A (2015) Numerical study of a low temperature water-in-glass evacuated tube solar collector. Energy Convers Manag 94:472–481. https://doi.org/10.1016/j.enconman.2015.01.091

    Article  Google Scholar 

  24. Azad E (2008) Theoretical and experimental investigation of heat pipe solar collector. Exp Thermal Fluid Sci 32:1666–1672. https://doi.org/10.1016/j.expthermflusci.2008.05.011

    Article  Google Scholar 

  25. Yin ZQ, Harding GL, Collins RE (1997) The thermal performance of the coaxial evacuated glass tubular solar collector. Sol Energy 2:19–20

    Google Scholar 

  26. Liu ZH, Hu RL, Lu L, Zhao F, Xiao HS (2013) Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector. Energy Convers Manag 73:135–143. https://doi.org/10.1016/j.enconman.2013.04.010

    Article  Google Scholar 

  27. Kim H, Kim J, Cho H (2017) Experimental study on performance improvement of U-tube solar collector depending on nanoparticle size and concentration of Al2O3 nanofluid. Energy 118:1304–1312. https://doi.org/10.1016/j.energy.2016.11.009

    Article  Google Scholar 

  28. Tong Y, Cho H (2015) Comparative Study on the Thermal Performance of Evacuated Solar Collectors with U-Tubes and Heat Pipes. Int J Air-Conditioning Refrig 23:1550019. https://doi.org/10.1142/S2010132515500194

    Article  Google Scholar 

  29. Kim JT, Ahn HT, Han H, Kim HT, Chun W (2007) The performance simulation of all-glass vacuum tubes with coaxial fluid conduit. Int Commun Heat Mass Transf 34:587–597. https://doi.org/10.1016/j.icheatmasstransfer.2007.01.012

    Article  Google Scholar 

  30. Tian Q (2006) Study on thermal efficiency and performance of U-tubular all-glass evacuated tube solar collector. Energy Eng 6:36–40

    Google Scholar 

  31. Tian Q (2007) Thermal performance of the U-type evacuated glass tubular solar collector. Build Energy Environ 26(3):51–54

    Google Scholar 

  32. Duffie J, Beckman W (2006) Solar Engineering of Thermal Processes, 4th ed. John Wiley & Sons, Hoboken. https://doi.org/10.1115/1.2930068

    Google Scholar 

  33. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expo 66:99–105. https://doi.org/10.1115/1.1532008

    Google Scholar 

  34. Incropera FP, Bergman TL, Lavine AS, DeWitt DP (2011) Fundamentals of Heat and Mass Transfer, 7th ed. John Wiley & Sons, Hoboken

    Google Scholar 

  35. Pak BC, Cho YI (1998) Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles. Exp Heat Transf 11:151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  36. Hussein AM, Sharma KV, Bakar RA, Kadirgama K (2013) The effect of cross sectional area of tube on friction factor and heat transfer nanofluid turbulent flow. Int Commun Heat Mass Transf 47:49–55. https://doi.org/10.1016/j.icheatmasstransfer.2013.06.007

    Article  Google Scholar 

  37. Shah RK (1975) Thermal entry length solutions for the circular tube and paralel plates. In: 3rd Natl. Heat Mass Transf. Conf., pp. 11–75

  38. Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99. https://doi.org/10.1063/1.2191571

  39. Verma SK, Tiwari AK (2015) Progress of nanofluid application in solar collectors: A review. Energy Convers Manag 100:324–346. https://doi.org/10.1016/j.enconman.2015.04.071

    Article  Google Scholar 

  40. Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles). Netsu Bussei 7:227–233. https://doi.org/10.2963/jjtp.7.227

    Article  Google Scholar 

  41. Bejan A (2013) Convection Heat Transfer, 4th ed. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9781118671627

    Book  Google Scholar 

  42. Das SK, Choi SUS, Yu W, Pradeep T (2007) Nanofluids: Science and Technology. John Wiley & Sons, Hoboken. https://doi.org/10.1002/9780470180693

    Book  Google Scholar 

  43. Kim H, Ham J, Park C, Cho H (2016) Theoretical investigation of the efficiency of a U-tube solar collector using various nanofluids. Energy 94:497–507. https://doi.org/10.1016/j.energy.2015.11.021

    Article  Google Scholar 

  44. Ma L, Lu Z, Zhang J, Liang R (2010) Thermal performance analysis of the glass evacuated tube solar collector with U-tube. Build Environ 45:1959–1967. https://doi.org/10.1016/j.buildenv.2010.01.015

    Article  Google Scholar 

  45. Verma SK, Tiwari AK, Chauhan DS (2016) Performance augmentation in flat plate solar collector using MgO / water nanofluid. Energy Convers Manag 124:607–617. https://doi.org/10.1016/j.enconman.2016.07.007

    Article  Google Scholar 

  46. Li Y, Xie HQ, Yu W, Li J (2011) Investigation on Heat Transfer Performances of Nanofluids in Solar Collector. Mater Sci Forum 694:33–36. https://doi.org/10.4028/www.scientific.net/MSF.694.33

    Article  Google Scholar 

  47. https://www.mgm.gov.tr/kurumsal/istasyonlarimiz.aspx?sSirala=AL&m=KARABUK, Internet Meteoroloji Genel Müdürlüğü “Dış Saha Ölçümleri”. (2016). https://www.mgm.gov.tr/kurumsal/istasyonlarimiz.aspx?sSirala=AL&m=KARABUK

  48. European Nuclear Society. Available at: http://www.euronuclear.org/info/encyclopedia/n/nuclear-power-plant-europe.htm, (2017)

  49. http://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics, (2016)

  50. http://www.worldatlas.com/articles/electricity-rates-around-the-world.html, (2017)

Download references

Acknowledgements

The authors would like to acknowledge the KBÜ-BAP office. This work was supported by KBÜ-BAP (Project ID number: KBÜ-BAP- 16/1-KP- 240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Kaya.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, H., Arslan, K. Numerical investigation of efficiency and economic analysis of an evacuated U-tube solar collector with different nanofluids. Heat Mass Transfer 55, 581–593 (2019). https://doi.org/10.1007/s00231-018-2442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2442-z

Navigation