Skip to main content
Log in

Morphology and thermophysical properties of non-aqueous titania nanofluids

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This work deals with the experimental investigation on thermophysical properties of TiO2-nanofluids and characterization of morphology and structure of TiO2 nanoparticles. Non-aqueous liquids like silicone oil and ethylene glycol are used as base fluids to prepare the nanofluids. Thermophysical properties including viscosity and thermal conductivity of these nanofluids are measured at different concentrations and temperatures. Results showed that silicone oil-based TiO2 nanofluid is Newtonian and the viscosity of this nanofluid increases with the loading of nanoparticles but it decreases nonlinearly with increasing temperature. Existing viscosity models are found unable to predict the viscosity of nanofluids. Although the effective thermal conductivities of both the silicone oil and ethylene glycol-based nanofluids increased with the TiO2 concentration, their enhanced thermal conductivity was found to decrease with increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Murshed SMS, Nieto de Castro CA (2014) Nanofluids: synthesis, properties and applications. Nova Science Publishers Inc., New York

    Google Scholar 

  2. Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids- a review. Heat Transf Eng 27:3–19

    Article  Google Scholar 

  3. Murshed SMS, Leong KC, Yang C (2008) Thermophysical and electrokinetic properties of nanofluids- a critical review. Appl Therm Eng 28:2109–2125

    Article  Google Scholar 

  4. Murshed SMS, Nieto de Castro CA, Lourenço MJV, Lopes MLM, Santos FJV (2011) A review of boiling and convective heat transfer with nanofluids. Renew Sust Energ Rev 15:2342–2354

    Article  Google Scholar 

  5. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231:99–105

    Google Scholar 

  6. Masuda H, Ebata A, Teramae K, Hishiunma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3 SiO2 and TiO2 ultra-fine particles). Netsu Bussei (4):227–233

  7. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373

    Article  Google Scholar 

  8. Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568

    Article  Google Scholar 

  9. Turgut A, Tavman I, Chirtoc M, Schuchmann HP, Sauter C, Tavman S (2009) Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int J Thermophys 30:1213–1226

    Article  Google Scholar 

  10. Murshed SMS, Leong KC, Yang C, Nguyen NT (2008) Convective heat transfer characteristics of aqueous TiO2 nanofluid under laminar flow conditions. Int J Nanosci 7:325–331

    Article  Google Scholar 

  11. Murshed SMS, Nieto de Castro CA, Lourenço MJV (2012) Effect of surfactant and nanoparticle clustering on thermal conductivity of aqueous nanofluids. J Nanofluid 1:75–179

    Google Scholar 

  12. Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Thermal Fluid Sci 33:706–714

    Article  Google Scholar 

  13. Murshed SMS (2012) Simultaneous measurement of thermal conductivity, thermal diffusivity, and specific heat of nanofluids. Heat Transf Eng 33:722–731

    Article  Google Scholar 

  14. Murshed SMS (2009) Correction and comment on “thermal conductance of nanofluids: is the controversy over?”. J Nanopart Res 11:511–512

    Article  Google Scholar 

  15. Mahbubul IM, Saidur R, Amalina MA (2012) Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf 55:874–885

    Article  Google Scholar 

  16. Chen H, Ding Y, Tan C (2007) Rheological behaviour of nanofluids. New J Phys 9:367

    Article  Google Scholar 

  17. Kolade B, Goodson KE, Eaton JK (2009) Convective performance of nanofluids in a laminar thermally developing tube flow. J Heat Transf 131:052402

    Article  Google Scholar 

  18. Chen L, Xie H (2009) Silicon oil based multiwalled carbon nanotubes nanofluid with optimized thermal conductivity enhancement. Colloid Surf A: Physicochem Eng Asp 352:136–140

    Article  Google Scholar 

  19. Yang Y, Oztekin A, Neti S, Mohapatra S (2012) Particle agglomeration and properties of nanofluids. J Nanopart Res 14:852–861

    Article  Google Scholar 

  20. Murshed SMS, Patil VS, Patil KR, Nieto de Castro CA, Coronas A (2013) Morphological and structural characterization of ZnO and TiO2 nanoparticles. Nano Spain Conference, Spain

    Google Scholar 

  21. França JMP, Vieira SIC, Lourenço MJV, Murshed SMS, Nieto de Castro CA (2013) Thermal conductivity of [C4mim][(CF3SO2)2N] and [C2mim][EtSO4] and their ionanofluids with carbon nanotubes: experiment and theory. J Chem Eng Data 58:467–476

    Article  Google Scholar 

  22. Lourenço MJ, Vieira SI (2014) Nanofluids preparation methodology, In: Eds., Murshed SMS, Nieto de Castro CA, Nanofluids: synthesis, properties and applications, Ch. 1, pp. 1–28, Nova Science Publishers Inc., New York

  23. Tominaka S, Tsujimoto Y, Matsushita Y, Yamaura K (2011) Synthesis of nanostructured reduced titanium oxide: crystal structure transformation maintaining nanomorphology. Angew Chem Int Ed 50:418–7421

    Article  Google Scholar 

  24. Yang Y, Oztekin A, Neti S, Mohapatra S (2011) Characterization and convective heat transfer with nanofluids. ASME/JSME 8th thermal engineering joint conference, Hawaii

    Book  Google Scholar 

  25. Murshed SMS, Santos FJV, Nieto de Castro CA (2013) Investigations of viscosity of silicone oil-based semiconductor nanofluids. J Nanofluid 2:261–266

    Article  Google Scholar 

  26. Murshed SMS, Tan SH, Nguyen NT (2008) Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J Phys D Appl Phys 41:085502

    Article  Google Scholar 

  27. Einstein A (1956) Investigations on the theory of the Brownian movement. Dover Publications, USA

    MATH  Google Scholar 

  28. Bachelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117

    Article  MathSciNet  Google Scholar 

  29. Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41:4626–4627

    Article  Google Scholar 

  30. Nguyen C, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Mintsa HA (2007) Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506

    Article  Google Scholar 

  31. Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys 42:055501

    Article  Google Scholar 

  32. Yu W, Xie H, Chen L, Li Y (2009) Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermochim Acta 491:92–96

    Article  Google Scholar 

  33. Dehkordi BL, Kazi SN, Hamdi M, Ghadimi A, Sadeghinezhad E, Metselaar HSC (2013) Investigation of viscosity and thermal conductivity of alumina nanofluids with addition of SDBS. Heat Mass Transf 49:1109–1115

    Article  Google Scholar 

  34. Gangwar J, Srivastava AK, Tripathi SK, Wan M, Yadav RR (2014) Strong enhancement in thermal conductivity of ethylene glycol-based nanofluids by amorphous and crystalline Al2O3 nanoparticles. Appl Phys Lett 105:063108

    Article  Google Scholar 

  35. Jiang H, Xu Q, Huang C, Shi L (2015) Effect of temperature on the effective thermal conductivity of n-tetradecane-based nanofluids containing copper nanoparticles. Particuology 22:95–99

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Fundação para a Ciência e Tecnologia (FCT), Portugal through grants SFRH/BPD/102518/2014 and PEst-OE/QUI/ UI0100/2013 and by Marie Curie Actions-PEOPLE-IRSES project (Ref.269321): New Working Fluids based on Natural Refrigerant and Ionic Liquids for Absorption Refrigeration– NARILAR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. S. Murshed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murshed, S.M.S., Santos, F.J.V., Nieto de Castro, C.A. et al. Morphology and thermophysical properties of non-aqueous titania nanofluids. Heat Mass Transfer 54, 2645–2650 (2018). https://doi.org/10.1007/s00231-018-2308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-018-2308-4

Navigation