Skip to main content
Log in

Numerical investigation of turbulent flow within a channel with chamfered edge ribs in stream-wise direction

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present paper reports a numerical investigation of a forced convection water flow within a two-dimensional ribbed channel. A uniform heat flux is applied on the external walls. The flow regime is turbulent and Reynolds numbers are in the range 10·103÷100·103. Square and chamfered rib shapes with different arrangements are analyzed in terms of various dimensionless heights and pitches of elements. The investigation is accomplished by using a CFD code and its aim consists in finding of arrangements to obtain a high Performance Evaluation Criterion (PEC). Results are presented in terms of temperature and velocity fields, profiles of average Nusselt number, average heat transfer coefficients and required pumping power. Heat transfer enhancement increases with the ribs presence, but it is accompanied by an increasing pumping power. In particular, the best performances in terms of Nusselt are shown for p/e = 4 and 12 for both the square and chamfered cases. The heat transfer improves as Reynolds number raises, but a substantial increase of pumping power is also observed. The utilization of chamfered ribs allows to increase the PEC, especially at low Re. The maximum PEC is equal to 1.3 and it is obtained for Re = 104 and p/e = 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity, m2/s

cp:

specific heat, J/kg K

d:

diameter, m

e:

rib height, m

f:

friction coefficient Eq. (10)

H:

channel height, m

L:

length, m

k:

turbulent kinetic energy, m2/s2

Nu:

Nusselt number Eq. (9)

p:

rib pitch, m

P:

pressure, Pa

PEC:

performance evaluation criteria index Eq. (11)

PP:

pumping power, W

Pr:

Prandtl number

q:

heat flux, W/m2

Re:

Reynolds number Eq. (8)

s:

channel thickness, m

T:

temperature, K

T*:

dimensionless temperature, T* = T/Tbulk

u:

velocity component, m/s

W:

channel width, m

w:

rib width, m

x, y:

spatial coordinates, m

δ:

Kronecher delta function

λ:

thermal conductivity, W/mK

μ:

dynamic viscosity, Pa s

ν:

kinematic viscosity, m2/s

ρ:

density, kg/m3

σ:

turbulent Prandtl number

τ:

wall shear stress, kg/m2

ω:

rate of dissipated turbulent kinetic energy

a:

ambient

avg:

average

f:

fluid

in:

inlet section

m:

mass

out:

outlet section

s:

smooth

T:

turbulent

w:

wall

References

  1. Bianco V, Manca O, Nardini S (2014) Performance analysis of turbulent convection heat transfer of Al2O3water-nanofluid in circular tubes at constant wall temperature. Energy 77:403–413. doi:10.1016/j.energy.2014.09.025

    Article  Google Scholar 

  2. Lee CK, Abdel-Moneim SA (2001) Computational analysis of heat transfer in turbulent flow past a horizontal surface with two-dimensional ribs. Int Commun Heat Mass Transfer 28(2):161–170. doi:10.1016/S0735-1933(01)00223-8

    Article  Google Scholar 

  3. Tanda G (2004) Heat transfer in rectangular channels with transverse and V-shaped broken riebs. Int J Heat Mass Transfer 47(2):229–243. doi:10.1016/S0017-9310(03)00414-9

    Article  Google Scholar 

  4. Promvonge P, Thianpong C (2008) Thermal performance assessment of turbulent channel flows over different shaped ribs. Int Commun Heat Mass Transfer 35(10):1327–1334. doi:10.1016/j.icheatmasstransfer.2008.07.016

    Article  Google Scholar 

  5. Promvonge P, Chompookham T, Kwankaomeng S, Thianpong C (2010) Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generators. Energy Convers Manag 51(6):1242–1249. doi:10.1016/j.enconman.2009.12.035

    Article  Google Scholar 

  6. Kim HM, Kim KY (2004) Design optimization of rib-roughened channel to enhance turbulent heat transfer. Int J Heat Mass Transf 47(23):5159–5168. doi:10.1016/j.ijheatmasstransfer.2004.05.035

    Article  MATH  Google Scholar 

  7. Kim KM, Kim BS, Lee DH, Moon H, Cho HH (2010) Optimal design of transverse ribs in tubes for thermal performance enhancement. Energy 35(6):2400–2406. doi:10.1016/j.energy.2010.02.020

    Article  Google Scholar 

  8. Xie G, Zheng S, Zhang W, Sundén B (2013) A numerical study of flow structure and heat transfer in a square channel with ribs combined downstream half-size or same-size ribs. Appl Therm Eng 61:289–300. doi:10.1016/j.applthermaleng.2013.07.054

    Article  Google Scholar 

  9. Viswanathan AK, Tafti DK (2006) Detached eddy simulation of turbulent flow and heat transfer in a two-pass internal cooling duct. Int J Heat Fluid Flow 27(1):1–20. doi:10.1016/j.ijheatfluidflow.2005.07.002

    Article  Google Scholar 

  10. Labbè O (2013) Large-eddy-simulation of flow and heat transfer in a ribbed duct. Comput Fluids 76:23–32. doi:10.1016/j.compfluid.2013.01.023

    Article  Google Scholar 

  11. Dritselis CD (2014) Large eddy simulation of turbulent channel flow with transverse roughness elements on one wall. Int J Heat Fluid Flow 50:225–239. doi:10.1016/j.ijheatfluidflow.2014.08.008

    Article  Google Scholar 

  12. Tan L, Zhang JZ, Xu HS (2014) Jet impingement on a rib-roughened wall inside semi-confined channel. Int J Therm Sci 86:210–218. doi:10.1016/j.ijthermalsci.2014.06.037

    Article  Google Scholar 

  13. Caliskan S, Baskaya S (2012) Experimental investigation of impinging jet array heat transfer from a surface with V-shaped and convergent-divergent ribs. Int J Therm Sci 59:234–246. doi:10.1016/j.ijthermalsci.2012.04.013

    Article  Google Scholar 

  14. Yadav AS, Bhagoria JL (2014) A numerical investigation of square sectioned transverse rib roughened solar air heater. Int J Therm Sci 79:111–131. doi:10.1016/j.ijthermalsci.2014.01.008

    Article  Google Scholar 

  15. Manca O, Nardini S, Ricci D (2012) A numerical study of nanofluid forced convection in ribbed channels. Appl Therm Eng 37:280–292. doi:10.1016/j.applthermaleng.2011.11.030

    Article  Google Scholar 

  16. Bejan A, Kraus AD (2003) Heat transfer Handbook. Wiley

  17. Baehr HD, Stephan K (2011) Heat and mass transfer, 3rd edn. Springer

  18. Incropera FD, DeWitt DP, Bergman TL, Lavine AS (2006) Fundamentals of heat and mass transfer, 6th edn. Wiley

  19. Rajasekaran J (2011) On the flow characteristics behind a backward-facing step and the design of a new axisymmetric model for their study. Master Degree Thesis, University of Toronto

  20. Rajasekaran J, Lavoie P (2011) Effect of boundary layer thickness on separated shear layer behind a backward-facing step. In: CASI Aero

  21. Driver DM, Seegmiller HL, Marvin JG (1987) Time-dependent behavior of a reattaching shear layer. AIAA j 25(7):914–919

    Article  Google Scholar 

  22. Kim JJ (1978) Investigation of separation and reattachment of a turbulent shear layer ow over a backward-facing step. PhD thesis, Stanford Universtiy

  23. Menter FR (1994) Two equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605

    Article  Google Scholar 

  24. Tennekes H, Lumley JL (1972) A first course in turbulence. The MIT Press

  25. Wilcox DC (1994) Turbulence modeling for CFD. DCW Industries

  26. Pope SB (2014) Turbulent flows. Cambridge University Press

  27. ANSYS FLUENT Theory Guide (2001) ANSYS Inc., Release 14.0

  28. Webb RL, Kim NH (2006) Principles of enhanced heat transfer, second edn. Taylor & Francis Group, New York

    Google Scholar 

  29. Karwa R, Solanki SC, Saini JS (2001) Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates. Energy 26(2):161–176

    Article  Google Scholar 

  30. Layek A, Saini JS, Solanki SC (2009) Effect of chamfering on heat transfer and friction characteristics of solar air heater having absorber plate roughened with compound turbulators. Renew Energy 34(5):1292–1298. doi:10.1016/S0360-5442(00)00062-1

    Article  Google Scholar 

  31. Schlichting H, Gersten K (2000) Boundary layer theory. Springer-Verlag, Berlin

  32. Elsaadawy E, Mortazaci H, Hamed MS (2008) Turbulence modeling of forced convection heat transfer in two-dimensional ribbed channels. ASME J Electron Packag 130(3):0310111–03101117. doi:10.1115/1.2912182

    Article  Google Scholar 

  33. Saberinejad H, Hashiehbaf A, Afrasiabian E (2010) A study of various numerical turbulence modeling methods in boundary layer excitation of a square Ribbed Channel. World Acad Sci Eng Technol 71:338–344

    Google Scholar 

  34. Haque A, Ahmad F, Yamada S, Raza S (2007) Assessment of Turbulence Models for Turbulent Flow over Backward Facing Step. In: Proceedings of the World Congress on Engineering. Vol IIWCE 2007, July 2–4, 2007, London, UK

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Bianco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianco, V., Borreani, W. & Lomonaco, G. Numerical investigation of turbulent flow within a channel with chamfered edge ribs in stream-wise direction. Heat Mass Transfer 53, 3211–3223 (2017). https://doi.org/10.1007/s00231-017-2078-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-017-2078-4

Navigation