Skip to main content
Log in

Analysis of polydisperse fuel spray flame

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper we analyzed the model of polydisperse fuel spray flame by using the sectional approach to describe the droplet-droplet interaction within the spray. The radii of the droplets are described by a probability density function. Our numerical simulations include a comparative analysis between three empirical droplet size distributions: the Rosin–Rammler distribution, the log-normal distribution and the Nakiyama–Tanasawa distribution. The log-normal distribution was found to produce a reasonable approximation to both the number and volume size distribution function. In addition our comparative analysis includes the application of the homotopy analysis method which yields convergent solutions for all values of the relevant parameters. We compared the above results to experimental fuel spray data such as \({\textit{Tetralin}}\), \(n-{\textit{Decane}}\), and \(n-{\textit{Heptane}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Pre-exponential rate factor

B :

Universal gas constant

C :

Vaporization coefficient

E :

Activation energy

\(c_{p}\) :

Specific heat of capacity

D :

Diffusion

L :

Liquid evaporation energy (i.e., latent heat of evaporation, enthalpy of evaporation)

Le :

Lewis number

m :

Mass

N :

Number of collisions

P :

Probability

p :

Pressure

Q :

Heat of reaction

\(Q_{i}\) :

\(i=0, 1, 2, 3\) the distribution function of the ith moment

R :

Radius of droplet

T :

Temperature

u :

Velocity

V :

Volume

v :

Average relative velocity

\(^{*}\) :

Denotes the non dimensional parameter

\(\rho\) :

Density

\(\eta\) :

Dimensionless parameter defined in Eq. (2.11)

\(\mu\) :

Dimensionless parameter defined in Eq. (2.11)

\(\alpha\) :

Dimensionless parameter defined in Eq. (2.11) and refer to volumetric droplet content

\(\lambda\) :

Thermal conductivity

coll :

Collision

cell :

Cell of parcel

F :

Fuel

f :

Flame

rel :

Relative

0:

Refers to condition at \(x=0\)

O :

Oxygen

g :

Gas

References

  1. Mendes MAA, Pereira JMC, Pereira JCF (2008) A numerical study of the stability of one-dimensional laminar premixed flames in inert porous media. Combust Flame 153:4

    Article  Google Scholar 

  2. Kaufmann D, Roth P (1990) Numerical simulation of one-dimensional laminar flames propagating into reacting premixed gases. Combust Flame 80:3

    Article  Google Scholar 

  3. Clarke JF (1975) Parameter perturbations in flame theory. Prog. Aerosp. Sci. 16:1

    Article  Google Scholar 

  4. Buckmaster J, Ludford GSS (1982) Theory of laminar flames. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  5. Polymeropoulos CE (1974) Flame propagation in a one-dimensional liquid fuel spray. Combust Sci Technol 9:5–6

    Article  Google Scholar 

  6. Satil PB, Sichel M, Nicolls JA (1978) Analysis of spray combustion in a research gas turbine combustor. Combust Sci Technol 18:21–31

    Article  Google Scholar 

  7. Sirignano WA (1983) Fuel droplet vaporization and spray combustion theory. Prog Energy Combust Sci 9:4

    Article  Google Scholar 

  8. Law CK (1982) Recent advances in droplet vaporization and combustion. Prog Energy Combust Sci 8:3

    Article  Google Scholar 

  9. Chiu HH, Liu TM (1977) Group combustion of liquid droplets. Combust Sci Technol 17:3–4

    Article  Google Scholar 

  10. Sankaran V, Menon S (2002) LES of spray combustion in swirling flows. J Turbul 3:1505–1510

    Article  MathSciNet  MATH  Google Scholar 

  11. Brzustowski TA, Twardus EM, Wojcicki S, Sobiesiak A (1979) Interaction of two burning fuel droplets of arbitrary size. AIAA J 17:11

    Google Scholar 

  12. Chiu HH, Kima HY, Crokea EJ (1982) Internal group combustion of liquid droplets. In: Symposium (international) on combustion, vol 19, pp 1

  13. Stiesch G (2003) Modeling Engine spray and combustion processes. Heat and mass transfer. Springer, Berlin

    Book  Google Scholar 

  14. Lefebvre AH (1989) Atomization and sprays. Hemisphere Publishing Corporation, Washington, DC

    Google Scholar 

  15. Liao SJ (1992) Proposed homotopy analysis techniques for the solution of nonlinear problems. Ph.D. Thesis, Shanghai, Shanghai Jiaotong University

  16. Turkyilmazoglu M (2015) Is homotopy perturbation method the traditional Taylor series expansion. Hacet J Math Stat 44:3

    MathSciNet  MATH  Google Scholar 

  17. Das S, Vishal K, Gupta PK, Saha SR (2011) Homotopy analysis method for solving fractional diffusion equation. Int J Appl Math Mech 7:9

    MATH  Google Scholar 

  18. Liao SJ (2005) Comparison between the homotopy analysis method and homotopy perturbation method. Appl Math Comput 169:1186–1194

    MathSciNet  MATH  Google Scholar 

  19. Turkyilmazoglu M (2012) The Airy equation and its alternative analytic solution. Phys Scr 86:5

    MATH  Google Scholar 

  20. Turkyilmazoglu M (2012) An effective approach for approximate analytical solutions of the damped duffing equation. Phys Scr 86:1

    MATH  Google Scholar 

  21. Turkyilmazoglu M (2011) An optimal analytic approximate solution for the limit cycle of duffing-van der pol equation. J Appl Mech ASME 78:2

    Article  Google Scholar 

  22. Tambour Y (1980) A sectional model for evaporation and combustion of sprays of liquid fuels. Isr J Technol 18:1–22

    MATH  Google Scholar 

  23. Silverman I, Greenberg JB, Tambour Y (1991) Asymptotic analysis of a premixed polydisperse spray flame. SIAM J Appl Math 51:5

    Article  MathSciNet  MATH  Google Scholar 

  24. Adam S, Schnerr GH (1997) Instabilities and bifurcations of non-equilibrium two-phase flows. J Fluid Mech 348:1

    Article  MathSciNet  MATH  Google Scholar 

  25. Sowa WA (1992) Interpreting mean drop diameters using distribution moments. At. Sprays 2:1

    Article  Google Scholar 

  26. O’Rourke PJ, Bracco FV (1980) Modelling of drop interaction in thick sprays and comparison with experiment. In: Stratified charge auto engineers conference. IMechE, London

  27. Beck JC, Watkins AP (2002) On the development of spray sub models based on droplet size moments. J Comput Phys 182:1

    Article  Google Scholar 

  28. Williams FA (1985) Combustion theory, 2nd edn. Benjamin/Cummings, Menlo Park

    Google Scholar 

  29. Katoshevski D (2006) Characteristics of spray grouping/ non-grouping behavior. Aerosol Air Qual Res 6:1

    Google Scholar 

  30. Miesse CC, Putnam AA (1957) Mathematical expressions for drop-size distributions. Injection and combustion of liquid fuels, Section II, WADC Technical Report 56-344, Mattelle Memorial Institute

  31. Beck JC, Watkins AP (2002) On the development of spray sub-models based on the droplet size moments. J Comput Phys 182:2

    Article  Google Scholar 

  32. Beck JC, Watkins AP (2003) On the development of spray models based on the droplet size moments. Proc R Soc A 459:2034

    Article  Google Scholar 

  33. Beck JC, Watkins AP (2003) Simulation of water and other non-fuel sprays using a new spray model. At. Sprays 13:1

    Article  Google Scholar 

  34. Mastroberardini A (2011) Homotopy analysis method applied to electrohydrodynamic flow. Commun Nonlinear Sci Numer Simul 16:2730–2736

    Article  MathSciNet  MATH  Google Scholar 

  35. Liao SJ (2003) Beyond perturbation: introduction to the homotopy analysis method. Chapman and Hall/CRC Press, Boca Raton

    Book  Google Scholar 

  36. Ku X, Hagmeijer R (2015) A new reduced model for the moments of droplet size distribution in condensing flow. Int J Numer Methods Heat Fluid Flow 25(2):320–332

    Article  MathSciNet  Google Scholar 

  37. Frank-Kamenetskii DA (1969) Diffusion and heat exchange in chemical kinetics. Plenum Press, New York

    Google Scholar 

  38. Turkyilmazoglu M (2014) Advances in the homotopy analysis method, Chapter 5. World Scientific, Singapore

    Google Scholar 

  39. Liao SJ (2009) Notes on the homotopy analysis method: some definitions and theorems. Commun Nonlinear Sci Numer Simul 14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ophir Nave.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nave, O., Lehavi, Y., Ajadi, S. et al. Analysis of polydisperse fuel spray flame. Heat Mass Transfer 53, 649–660 (2017). https://doi.org/10.1007/s00231-016-1844-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1844-z

Keywords

Navigation