Skip to main content
Log in

2D numerical simulation of impinging jet to the flat surface by \(k - \omega - \overline{{v^{2} }} - f\) turbulence model

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this article, the effects of dependent parameters such as inlet Reynolds number (4000 ≤ Re ≤ 20,000), nozzle-plate distance (4 ≤ H/D ≤ 10), plate diameter (18 < D/B < 40 based on other approaches), inlet flow type (fully developed, uniform and pulsed) and thermal boundary condition (constant heat flux and temperature) in confined and unconfined turbulent impinging jet are investigated considering constant inlet fluid (air). The obtained results are compared with other experimental and numerical results found in the literature. This investigation indicates that the \(k - \omega - \overline{{v^{2} }} - f\) model acquires appropriate performance in terms of thermal and dynamical fluid analysis compared to other turbulence models and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

ρ :

Fluid density (air)

k :

Turbulent kinetic energy

ω :

Specific dissipation rate

\(\overline{{v^{2} }}\) :

The turbulence stress normal to the wall

f :

Relaxation parameter in modelled \(\overline{{v^{2} }}\) pressure strain rate

μ :

Dynamic viscosity

μ t :

Turbulent eddy viscosity

x j :

Direction components

U j :

Velocity components

\({\text{P}}_{k}\) :

Production of the kinetic energy

β, β *, ζ, σ k , σ w , β o , f β , C μ , χ w , C 1, C 2, C L , C η :

Correlation coefficients

σ d :

Cross-diffusion

Ωij :

Mean rotation rate tensor

S ij :

Mean strain rate tensor

T :

Time scale

L :

Length scale

ν :

Kinetic viscosity

ν t :

Turbulent eddy kinetic viscosity

Nu :

Nusselt number

Re :

Reynolds number (=UD/ν)

u peak :

Maximum inlet velocity(=2 in nondimentional)

Pr, Pr t :

Laminar and turbulent Prandtl numbers

x :

Distance from stagnation point

y :

Distance from the target wall (impinging plate)

D :

Width of the slot nozzle

A :

Amplitude of pulsation

u avg :

Mean inlet velocity

fr :

Pulsation frequency

θ :

Temperature

τ :

Cyclic period time

H:

Distance between impinging plate and nozzle

X:

Width of the impinging plate

References

  1. Baughn JW, Shimizu S (1989) Heat transfer measurements from a surface with uniform heat flux and an impinging jet. J Heat Transf 111(4):1096–1098

    Article  Google Scholar 

  2. Baughn JW, Hechanova AE, Yan X (1991) An experimental study of entrainment effects on the heat transfer from a flat surface to a heated circular impinging jet. J Heat Transf 113(4):1023–1025

    Article  Google Scholar 

  3. Cooper D, Jackson DC, Launder BE, Lio GX (1993) Impinging jet studies for turbulence model assessment-I. Flow field experiments. Int J Heat Mass Transf 36(10):2675–2684

    Article  Google Scholar 

  4. Colucci DW, Viskanta R (1996) Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp Thermal Fluid Sci 13(1):71–80

    Article  Google Scholar 

  5. Hadziabdic M, Hanjalic K (2008) Vortical structures and heat transfer in a round impinging jet. J Fluid Mech 596:221–260

    MATH  Google Scholar 

  6. Jaramillo JE, Perez-Segarra CD, Rodrigues I, Olivia A (2008) Numerical study of plane and round impinging jets using RANS models. Numer Heat Transf Part B 54:213–237

    Article  Google Scholar 

  7. Kubacki S, Dick E (2010) Simulation of plane impinging jets with k − ω based hybrid RANS/LES models. Int J Heat Fluid Flow 31(5):862–878

    Article  Google Scholar 

  8. Kubacki S, Dick E (2011) Hybrid RANS/LES of flow and heat transfer in round impinging jets. Int J Heat Fluid Flow 32(2011):631–651

    Article  Google Scholar 

  9. Koseoglu MF, Baskaya S (2010) The role of jet inlet geometry in impinging jet heat transfer, modeling and experiments. Int J Therm Sci 49:1417–1426

    Article  Google Scholar 

  10. Sheriff, HS, Zumbrunnen, DA (1994) Effect of flow pulsations on the cooling effectiveness of an impinging jet. J Heat Mass Transf 116:886–895

    Google Scholar 

  11. Sailor DJ, Rohli DJ, Fu Q (1999) Effect of variable duty cycle flow pulsations on heat transfer enhancement for an impinging air jet. Int J Heat Fluid Flow 20(6):574–580

    Article  Google Scholar 

  12. Hofmann HM, Movileanu DL, Kind M, Martin H (2007) Influence of a pulsation on heat transfer and flow structure in submerged impinging jets. Int J Heat Mass Transf 50(17):3638–3648

    Article  Google Scholar 

  13. Zhou JW, Wang YG, Middelberg G, Herwig H (2009) Unsteady jet impingement: heat transfer on smooth and non-smooth surfaces. Int Commun Heat Mass Transf 36(2):103–110

    Article  Google Scholar 

  14. Xu P, Mujumdar AS, Poh HJ, Yu B (2010) Heat transfer under a pulsed slot turbulent impinging jet at large temperature differences. Therm Sci 14:271–281

    Article  Google Scholar 

  15. Xu P, Yu B, Qiu Sh, Poh HJ, Mujumdar AS (2010) Turbulent impinging jet heat transfer enhancement due to intermittent pulsation. Int J Therm Sci 49(7):1247–1252

    Article  Google Scholar 

  16. Durbin PA (1991) Near-wall turbulence closure modeling without damping functions. J Theor Comput Fluid Dyn. 3:1–13

    MATH  Google Scholar 

  17. Nazari MR, Sohankar A, Malekzadeh S, Alemrajabi A (2009) Reynolds-averaged Navier–Stokes simulations of unsteady separated flow using the \(k - \omega - \overline{{v^{2} }} - f\)model. J Turbul 10(34):1–13

    Google Scholar 

  18. Wilcox DC (2006) Turbulence modeling for CFD, 4th edn. DCW Industries, Inc., La Canada

    Google Scholar 

  19. Menter FR (1994) Two-equation eddy-vuscosity turbulence models for engineering applications. AIAA J 32:1598–1605

    Article  Google Scholar 

  20. Davidson L, Nielsen PV, Sveningsson A (2003) \(\overline{{v^{2} }} - f\) Modifications of the  \(\overline{{v^{2} }} - f\) model for computing the flow in a 3D wall jet, turbulence. Heat Mass Transf 4:577–584

    Google Scholar 

  21. Tsubokura M, kobayashi T, Taniguchi N, Jones WP (2003) A numerical study on the eddy structures of impinging jets exited at the inlet. Int J Heat Fluid Flow 24:500–511

    Article  Google Scholar 

  22. Maurel S, Solliec C (2001) A turbulent plane jet impinging nearby and far from a flat plate. Exp Fluids 31:687–696

    Article  Google Scholar 

  23. Mladin EC, Zumbrunnen DA (2000) Alterations to coherent flow structures and heat transfer due to pulsations in an impinging air-jet. Int J Therm Sci 39(2):236–248

    Article  Google Scholar 

  24. Ashforth-Frost S, Jambunathan K, Whitney CF (1997) Velocity and turbulence characteristics of a semiconfined orthogonally impinging slot jet. Exp Thermal Fluid Sci 14:60–67

    Article  Google Scholar 

  25. Zhe J, Modi V (2001) Near wall measurements for a turbulent impinging slot jet. Trans ASME J Fluid Eng 123:112–120

    Article  Google Scholar 

  26. Beaubert F, Viazzo S (2003) Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers. Int J Heat Fluid Flow 24:512–519

    Article  Google Scholar 

  27. Tu CV, Wood DH (1966) Wall pressure and shear stress measurements beneath an impinging jet. Exp Therm Fluid Sci 13:364–373

    Article  Google Scholar 

  28. Wallin S, Johansson AV (2000) An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J Fluid Mech 403:89–132

    Article  MATH  MathSciNet  Google Scholar 

  29. Abe K, Jang Y-J, Leschziner MA (2003) An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int J Heat Fluid Flow 24(2):181–198

    Article  Google Scholar 

  30. Bovo M, Etemad S, Davidsson L (2009) On the numerical modeling of impinging jet heat transfer. Paper presented at the international symposium on convective heat and mass transfer in sustainable energy, Hammamet, Tunisia

  31. Beitelmal AH, Saad MA, Patel CD (2000) The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet. Int J Heat Fluid Flow 21:156–163

    Article  Google Scholar 

  32. Isman MK, Pulat E, Etemoglu AB, Can M (2008) Numerical investigation of turbulent impinging jet cooling of a constant heat flux surface. Numer Heat Transf Part A Appl 53(10):1109–1132

    Article  Google Scholar 

  33. Morris GK, Garimella SV, Amano RS (1996) Prediction of Jet impingement heat transfer using a hybrid wall treatment with different turbulent Prandtl number functions. ASME J Heat Transf 118:562–569

    Article  Google Scholar 

  34. Shi YL, Ray MB, Mujumdar AS (2002) Computational study of impingement heat transfer under a turbulent slot jet. Ind Eng Chem Res 41(18):4643–4651

    Article  Google Scholar 

  35. Hofmann H, Martin H, Kind M (2004) Numerical simulation of heat transfer from an impinging jet to a flat plate. Chem Eng Technol 27(1):27–30

    Article  Google Scholar 

  36. Townsend AA (1976) The structure of turbulent shear flow, 2nd edn. Cambridge University Press, New York

    MATH  Google Scholar 

  37. Smith EJ, Mi J, Nathan GJ, Dally, BB (2004) Preliminary examination of a round jet initial condition anomaly for the k-e turbulence model. In: 15th Australasian fluid mechanics conference, The University of Sydney, Sydney, Australia, December 13–17

  38. San JY, Huang CH, Shu MH (1997) Impingement cooling of a confined circular air jet. Int J Heat Mass Transf 40:1355–1364

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Nazari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaji, E., Nazari, M.R. & Seifi, Z. 2D numerical simulation of impinging jet to the flat surface by \(k - \omega - \overline{{v^{2} }} - f\) turbulence model. Heat Mass Transfer 52, 127–140 (2016). https://doi.org/10.1007/s00231-015-1688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1688-y

Keywords

Navigation