Skip to main content
Log in

Natural convection of silica–water nanofluids based on experimental measured thermophysical properties: critical analysis

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

An experimental and numerical study was performed to investigate the effect of different formulas for nanofluid thermal conductivity and dynamic viscosity on natural convective heat transfer. It was found that the heat transfer across the enclosure using different models can be enhanced or deteriorated with respect to the base fluid. Also, it was found that the inconsistencies in the reported thermal conductivity and dynamic viscosity from different research groups are mainly due to the characterization of the nanofluid, including determination of colloidal stability and particle size, (i.e., aggregates size) within nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Choi US (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div 231:99–105

    Google Scholar 

  2. Haddad Z, Oztop HF, Abu-Nada E, Mataoui A (2012) A review on natural convective heat transfer of nanofluids. Renew Sustain Energy Rev 16(7):5363–5378

    Article  Google Scholar 

  3. Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  MATH  Google Scholar 

  4. Ho CJ, Chen MW, Li ZW (2008) Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Transf 51:4506–4516

    Article  MATH  Google Scholar 

  5. Abu-Nada E, Masoud Z, Oztop HF, Compo A (2010) Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci 49:479–491

    Article  Google Scholar 

  6. Lin KC, Violi A (2010) Natural convection heat transfer of nanofluids in a vertical cavity: effects of non-uniform particle diameter and temperature on thermal conductivity. Int J Heat Fluid Flow 31:236–245

    Article  Google Scholar 

  7. Abu-Nada E, Chamkha A (2010) Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–water nanofluid. Int J Therm Sci 49:2339–2352

    Article  Google Scholar 

  8. Jahanshahi M, Hosseinizadeh SF, Alipanah M, Dehghani A, Vakilinejad GR (2010) Numerical, simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO2 nanofluid. Int Commun Heat Mass Transf 37:687–694

    Article  Google Scholar 

  9. Lai FH, Yang YT (2011) Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. Int J Therm Sci 50:1930–1941

    Article  Google Scholar 

  10. Nnanna AG (2007) Experimental model of temperature-driven nanofluid. J Heat Transfer Trans ASME 129:697–704

    Article  Google Scholar 

  11. Ho CJ, Liu WK, Chang YS, Lin CC (2010) Natural convection heat transfer of alumina–water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci 49:1345–1353

    Article  Google Scholar 

  12. Haddad Z, Abid C, Oztop HF, Mataoui A (2014) A review on how the researchers prepare their nanofluids. Int J Therm Sci 76:168–189

    Article  Google Scholar 

  13. Bejan A (2004) Convection heat transfer, 3rd edn. Wiley, New York

    MATH  Google Scholar 

  14. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA (2001) Anomalous thermal conductivity enhancement in nano-tube suspensions. Appl Phys Lett 79:2252–2254

    Article  Google Scholar 

  15. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  Google Scholar 

  16. Lee G-J, Kima CK, Lee MK, Rhee CK, Kim S, Kim C (2012) Thermal conductivity enhancement of ZnO nanofluid using a one-step physical method. Thermochim Acta 542:24–27

    Article  Google Scholar 

  17. Wang X, Zhu D, Yang S (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470(1–3):107–111

    Article  Google Scholar 

  18. Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu–H2O nanofluids. Thermochim Acta 469:98–103

    Article  Google Scholar 

  19. Liu MS, Lin CC, Tsai CY, Wang CC (2005) Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49:3028–3033

    Article  Google Scholar 

  20. Lee S, Choi SUS, Li S, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transfer 121:280–289

    Article  Google Scholar 

  21. Zhu H, Zhang C, Liu S, Tang Y, Yin Y (2006) Effects of nanoparticles clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Appl Phys Lett 89:023123-1–023123-3

    Google Scholar 

  22. Teng TP, Hung YH, Teng TC, Moa HE, Hsu HG (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30:2213–2218

    Article  Google Scholar 

  23. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer 125:567–574

    Article  Google Scholar 

  24. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91(7):4568–4572

    Article  Google Scholar 

  25. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R et al (2009) A benchmark study on the thermal conductivity of nanofluids. J Appl Phys 106:094312

    Article  Google Scholar 

  26. Buongiorno J (2010) Letter to the editor. Int J Heat Fluid Flow 31:246–247

    Article  Google Scholar 

  27. Nguyen CT, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, Mintsa HA (2007) Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506

    Article  Google Scholar 

  28. Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Mintsa HA (2008) Viscosity data for Al2O3–water nanofluid—hysterisis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci 47:103–111

    Article  Google Scholar 

  29. Chevalier J, Tillement O, Ayela F (2007) Rheological properties of nanofluids flowing through microchannels. Appl Phys Lett 91:233103

    Article  Google Scholar 

  30. Lu W, Fan Q (2008) Study for the particle’s scale effect on some thermo-physical properties of nanofluids by a simplified molecular dynamics method. Eng Anal Bound Elem 32(4):282–289

    Article  MATH  Google Scholar 

  31. Prasher R, Song D, Wang J (2006) Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett 89:133108

    Article  Google Scholar 

  32. Timofeeva EV, Routbort JL, Singh D (2009) Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 106:014304

    Article  Google Scholar 

  33. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K (2009) An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube based aqueous nanofluids. Int J Heat Mass Transf 52(21–22):5090–5101

    Article  Google Scholar 

  34. Kim CK, Lee G-J, Rhee CK (2012) A study on heat transfer characteristics of spherical and fibrous alumina nanofluids. Thermochim Acta 542:33–36

    Article  Google Scholar 

  35. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermophys Heat Transfer 13:474–480

    Article  Google Scholar 

  36. Venerus DC et al (2010) Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer applications. Appl Rheol 20:44582

    Google Scholar 

  37. Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JB, Ren ZF, Kang YT, Ohtani H, Nanda J, McKinley GH, Chen G (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103:074301

    Article  Google Scholar 

  38. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell model. J Nanopart Res 5(1–2):167–171

    Article  Google Scholar 

  39. Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043

    Article  Google Scholar 

  40. Wang B-X, Zhou L-P, Peng X-F (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672

    Article  MATH  Google Scholar 

  41. Maxwell JC (1873) A treatise on electricity and magnetism, 1st edn, vol 1. Clarendon Press, Oxford, pp 360–366

    Google Scholar 

  42. Corcione M (2011) Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manage 52:789–793

    Article  Google Scholar 

  43. Prasher R, Bhattacharya P, Phelan PE (2005) Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett 94(2):025901

    Article  Google Scholar 

  44. Evans W, Fish J, Keblinski P (2006) Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 88(9):93116

    Article  Google Scholar 

  45. Tavman I, Turgut A, Chirtoc M, Schuchmann H, Tavman S (2008) Experimental investigation of viscosity and thermal conductivity of suspensions containing nanosized ceramic particles. Arch Mater Sci Eng 34:99–104

    Google Scholar 

  46. Kang HU, Kim SH, Oh JM (2006) Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transf 19:181–191

    Article  Google Scholar 

  47. Hwang YJ, Ahn YC, Shin HS, Lee CG, Kim GT, Park HS, Lee JK (2006) Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys 6:1068–1071

    Article  Google Scholar 

  48. Eapen J, Williams WC, Buongiorno J, Hu L-W, Yip S (2007) Mean-field versus microconvection effects in nanofluid thermal conduction. Phys Rev Lett 99(095901):1–4

    Google Scholar 

  49. Jahanshahi M, Hosseinizadeh SF, Alipanah M, Dehghani A, Vakilinejad GR (2010) Numerical, simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO2 nanofluid. Int Commun Heat Mass Transfer 37:687–694

    Article  Google Scholar 

  50. Einstein A (1906) Eine Neue Bestimmung der Molekiildimensionen. Ann Phys 19(4):289–306

    Article  MATH  Google Scholar 

  51. Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersions. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  52. Brinkman HC (1952) The viscosity of concentrated suspensions and solution. J Chem Phys 20:571

    Article  Google Scholar 

  53. Batchelor GR (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(Pt. 1):97–127

    Article  MathSciNet  Google Scholar 

  54. Buongiorno J (2006) Convective transport in nanofluids. ASME J Heat Transf 128:240–250

    Article  Google Scholar 

  55. Pak BC, Cho YI (1999) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  Google Scholar 

  56. Maiga S, Palm SJ, Nguyen CT, Roy G, Galanis N (2005) Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow 26:530–546

    Article  Google Scholar 

  57. Wang X, Xu X, Choi SUS (1999) Thermal conductivity of nanoparticles–fluid mixture. J Thermophys Heat Transfer 13:474–480

    Article  Google Scholar 

  58. Rudyak VY (2013) Viscosity of nanofluids—why it is not described by the classical theories. Adv Nanoparticles 2:266–279

    Article  Google Scholar 

  59. Mondragon R, Julia JE, Barba A, Jarque JC (2012) Characterization of silica–water nanofluids dispersed with an ultrasound probe: a study of their physical properties and stability. Powder Technol 224:138–146

    Article  Google Scholar 

  60. Buongiorno J (2006) Convective transport in nanofluids. J Heat Transfer 128:240–250

    Article  Google Scholar 

  61. Nemati H, Farhadi M, Sedighi K, Fattahi E, Darzi AAR (2010) Lattice Boltzmann simulation of nanofluid in lid-driven cavity. Int Commun Heat Mass Transfer 37:1528–1534

    Article  Google Scholar 

  62. Kefayati GHR, Hosseinizadeh SF, Gorji M, Sajjadi H (2012) Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to water/copper nanofluid. Int J Therm Sci 52:91–101

    Article  Google Scholar 

  63. Guo Y, Daoyang Q, Shen S, Bennacer R (2012) Nanofluid multi-phase convective heat transfer in closed domain: simulation with lattice Boltzmann method. Int Commun Heat Mass Transfer 39:350–354

    Article  Google Scholar 

  64. Bawazeer S (2013) Stability and accuracy of lattice boltzmann method. M.S. thesis, University of Calgary

  65. Mohamad AA (2011) Lattice Boltzmann method, fundamentals and engineering applications with computer codes. Springer, London

    MATH  Google Scholar 

  66. Krane RJ, Jessee J (1983) Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: 1st ASME-JSME thermal engineering joint conference, vol 1, pp 323–329

  67. de Vahl Davis G (1983) Natural convection of air in a square cavity: a benchmark numerical solution. Int J Numer Meth Fluids 3:249–264

    Article  MATH  Google Scholar 

  68. Kahveci K (2010) Buoyancy driven heat transfer of nanofluids in a tilted enclosure. J Heat Transfer 132:062501

    Article  Google Scholar 

  69. Markatos NC, Pericleous KA (1984) Laminar and turbulent natural convection in an enclosed cavity. Int J Heat Mass Transf 27:772–775

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoubida Haddad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, Z., Abid, C., Mohamad, A.A. et al. Natural convection of silica–water nanofluids based on experimental measured thermophysical properties: critical analysis. Heat Mass Transfer 52, 1649–1663 (2016). https://doi.org/10.1007/s00231-015-1682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-015-1682-4

Keywords

Navigation