Skip to main content
Log in

Experimental study on the heat transfer and flow properties of Ag–ethylene glycol nanofluid as a coolant

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The heat transfer and flow characteristics of silver (Ag) Ethylene glycol (EG) nanofluids, flowing through a tubular heat exchanger were experimentally investigated. The spherically shaped Ag nanoparticles of an average size of 10–65 nm were dispersed in EG in a 0.1–2.0 vol%. The test results reveal that the convective heat transfer coefficient and pressure drop of the Ag–EG nanofluids increased from 39.5 to 49 and 1.42 to 23.7 % respectively, with increased nanoparticles concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A:

Surface area, m2

C:

Specific heat capacity, J/(kg K)

D:

Inner tube diameter, m

L:

Length of the tube, m

f:

Friction factor

h:

Convective heat transfer coefficient, W/(m2 K)

K:

Thermal conductivity, W/(m K)

m:

Mass flow rate, kg/s

Re:

Reynolds number

Nu:

Nusselt number

Pr:

Prandtl number

Pe:

Peclet number

∆p:

Pressure drop, Pa

v:

Volume, m3

Q:

Heat transfer rate, W

Qave :

Average heat transfer rate, W

T:

Temperature, K

T(mean) :

Bulk temperature of the nanofluid, K

Twall :

Average temperature of the wall, K

∆Tlm :

Logrithmic mean temperature difference, K

U:

Overall heat transfer coefficient, W/(m2 K)

um :

Mean velocity of the nanofluid, m/s

m:

Dynamic viscosity, Pas

ρnf = ρeff:

Density of the nanofluid, kg/m3

α:

Thermal diffusivity, m2/s

Øp:

Particle volume concentration (%)

δt:

Tube thickness, m

ave:

Average

bf:

Base fluid

c:

Cold

h:

Hot

i:

Inside

in:

Inlet

m:

Mean

nf = eff:

Nanofluid

o:

Outside

out:

Outlet

p:

Nanoparticle

References

  1. Lim DC, Lopez-Salido I, Kim YD (2006) Characteriztion of Ag nanoparticles on Si wafer prepared using tollen’s reagent ad acid-etching. Appl Surf Sci 253:959–965

    Article  Google Scholar 

  2. Ma MG, Li SM, Jia N, Zhu JF, Sun RC, Zhu YJ (2011) Fabrication and characterization of Ag/calcium slicate core-shell nanocomposites. Mater Lett 65:3069–3071

    Article  Google Scholar 

  3. Choi SUS, Zhang ZG, Yu W, Lockood FE, Grulke EA (2001) Anamalous Thermal conductivity enhancement in nanotube suspensions. Appl Phy Lett 79:2252–2254

    Article  Google Scholar 

  4. Chen H, Ding Y, Lapkin A, Fan X (2009) Rheological behaviour of ethylene glycol-titanate nanotube nanofluids. J Nanoparticle Res 11:1513–1520

    Article  Google Scholar 

  5. Chang MH, Liu HS, Tai CY (2011) Preparation of copper oxide nanoparticles and its application in nanofluid. Powder Tech 207:378–386

    Article  Google Scholar 

  6. Yu W, Xie H, Li Y, Chen L (2011) Experimental investigation on thermal conductivity and viscosity of aluminium nitride nanofluid. Particuology 9:187–191

    Article  Google Scholar 

  7. Hwang KS, Jang SP, Choi SUS (2009) Flow and convective heat transfer characteristics of ethylene glycol-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Transf 52:193–199

    Article  MATH  Google Scholar 

  8. Ferrouillat S, Bontemps A, Ribeiro JP, Gruss JA, Soriano O (2011) Hydraulic and heat transfer study of SiO2/ethylene glycol nanofluids in horizontal tubes with imposed wall temperature boundary conditions. Int J Heat Fluid Flow 32:424–439

    Article  Google Scholar 

  9. Vafaei S, Wen D (2012) Convective heat transfer of aqueous alumina nanosuspensions in a horizontal mini-channel. Heat Mass Transf 48:349–357

    Article  Google Scholar 

  10. Duangthongsuk W, Wongwises S (2009) Heat transfer enhancement and pressure drop characteristics of TiO2–ethylene glycol nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf 52:2059–2067

    Article  Google Scholar 

  11. Tiruselvam R, Chin WM, Raghavan VR (2012) Double tube heat exchanger with novel enhancement: part II—single phase convective heat transfer. Heat Mass Tranf 48:1451–1462

    Article  Google Scholar 

  12. Suresh S, Chandrasekar M, Selvakumar P (2012) Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube. Heat Mass Transf 48:683–694

    Article  Google Scholar 

  13. Nasiri M, Etemad SG, Rohollah (2011) Turbulent convective heat transfer of nanofluids through a square channel. Korean J Chem Eng 28:2230–2235

    Article  Google Scholar 

  14. Fotukian SM, Esfahany MN (2010) Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/ethylene glycol nanofluid inside a circular tube. Int J Heat Fluid Flow 31:606–612

    Article  Google Scholar 

  15. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phy Lett 78:718–720

    Article  Google Scholar 

  16. Penas JRV, Ortiz de Zarate JM, Khayet M (2008) Measurement of the thermal conductivity of nanofluids by the multicurrent hot-wire method. J Appl Phy 10:044314

    Article  Google Scholar 

  17. Gallego MM, Verdejo R, Khayet M, Ortiz de Zarate M, Essalhi M, Lopez-Manchado MA (2011) Thermal conductivity of carbon nanotubes and grapheme in epoxy nanofluids and nanocomposites. Nanosci Res Lett 6:610

    Article  Google Scholar 

  18. Yu W, Xie H, Chen L, Li Y (2009) Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid. Thermoch Acta 491:92–96

    Article  Google Scholar 

  19. Pastoriza-Gallego MJ, Lugo L, Legido JL, Pineiro MM (2011) Thermal conductivity and viscosity measurement of ethylene glycol-based Al2O3 nanaofluids. Naonosci Res Lett 6:221

    Article  Google Scholar 

  20. Hong J, Kim D (2012) Effects of aggregation on the thermal conductivity of alumina/water nanofluids. Thermoch Acta 542:28–32

    Article  Google Scholar 

  21. Kang H, Zhang Y, Yang M, Li L (2012) Molecular dynamics simulation on effect of nanoparticle aggregation on transport properties of a nanofluid. J Nanotech Eng Med 3:021001

    Article  Google Scholar 

  22. Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheo J 2:35–40

    Google Scholar 

  23. Teng T-P, Hung Y-H, Jwo C-S, Chen C–C, Jeng L-Y (2011) Pressure drop of TiO2 nanofluid in circular pipes. Particuology 9:486–491

    Article  Google Scholar 

  24. Vajravelu K, Prasad KV, Lee J, Lee C, Pop I, Van Gorder RA (2011) Convective heat transfer in the flow of viscous Ag–ethylene glycol and Cu-ethylene glycol nanofluids over a stretching surface. Int J Thermal Sci 50:843–851

    Article  Google Scholar 

  25. Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transfer 46:2665–2672

    Article  MATH  Google Scholar 

  26. Prasher R, Evans W, Meakin P (2006) Effect of aggregation on thermal conduction in colloidal nanofluids. Appl Phy Lett 89:1–3

    Google Scholar 

  27. Khanafer K, Vafai K (2011) A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf 54:4410–4428

    Article  MATH  Google Scholar 

  28. Swanson HE, Tatge E (1953) Standard X-ray diffraction powder patterns, National Bureau of Standards (U.S.). Circular 359:1

    Google Scholar 

  29. Cullity BD (1978) Elements of HRD. Edison-Wesley P Inc., USA

    Google Scholar 

  30. Kulkarni DP, Namburu PK, Ed Bargar H, Das DK (2008) Convective heat transfer and fluid dynamic characteristics of SiO2 ethylene glycol/water nanofluid. Heat Transf Eng 29:1027–1035

    Article  Google Scholar 

  31. Hojjat M, Etemad SG, Bagheri R (2010) Laminar heat transfer of non-Newtonian nanofluids in a circular tube. Kor J Chem Eng 27:1391–1396

    Article  Google Scholar 

  32. Farajollahi B, Etemad SG, Hojjat M (2010) Heat transfer of nanofluids in a shell and tube heat exchanger. Int J Heat Mass Transf 53:12–17

    Article  MATH  Google Scholar 

  33. Madhesh D, Parameshwaran R, Kalaiselvam S (2014) Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Thermal Fluid Sci 52:104–115

    Article  Google Scholar 

  34. Mohammad H, Etemed SG, Bagheri R, Thibault J (2011) Turbulent forced convection heat transfer of non-Newtonian nanofluids. Exp Thermal Fluid Sci 35:1351–1356

    Article  Google Scholar 

  35. Barnes HA (1997) Thixotropy a review. J Non-Newtonian Fluid Mech 70:1–33

    Article  Google Scholar 

  36. Mojarrad MS, keshavarz A, ziabasharhagh M, Raznahan MM (2014) Experimental investigation on heat transfer enhancement of alumina/water and alumina/water–ethylene glycol nanofluids in thermally developing laminar flow. Exp Thermal Fluid Sci 53:111–118

  37. Naik MT, Janardana GR, Sundar LS (2013) Experimental investigation of heat transfer and friction factor with water–propylene glycol based CuO nanofluid in a tube with twisted tape inserts. Int Commun Heat Mass Trasf 46:13–21

    Article  Google Scholar 

  38. Reddy MCS, Rao VV (2014) Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts. Int Commun Heat Mass Transf 50:68–76

    Article  Google Scholar 

  39. Zamzamian A, Oskouie SN, Doosthoseini A, Joneidi A, Pazouki M (2011) Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp Thermal Fluid Sci 35:495–502

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support extended by the DST, New Delhi, to carry out this research work under SERC Fast Track Proposals for Young Scientists scheme (DST Sanction order No. SR/FTP/ETA-07/2009). The authors would also like to thank. R. Parameshwaran, Centre for Nanoscience and Technology, Anna University, Chennai, for his assistance in nanomaterials’ preparation and characterisation. The authors are also grateful to Dr. Parvathi for her valuable comments and suggestions on the language used in the manuscript. The authors express their sincere thanks to the Editor and Reviewers for their positive criticism and constructive advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalaiselvam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhesh, D., Kalaiselvam, S. Experimental study on the heat transfer and flow properties of Ag–ethylene glycol nanofluid as a coolant. Heat Mass Transfer 50, 1597–1607 (2014). https://doi.org/10.1007/s00231-014-1370-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-014-1370-9

Keywords

Navigation