Skip to main content
Log in

Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The effects of the air variable properties (density, viscosity and thermal conductivity) on the buoyancy-driven flows established in open square cavities are investigated, as well as the influence of the stated boundary conditions at open edges and the employed differencing scheme. Two-dimensional, laminar, transitional and turbulent simulations are obtained, considering both uniform wall temperature and uniform heat flux heating conditions. In transitional and turbulent cases, the low-Reynolds k − ω turbulence model is employed. The average Nusselt number and the dimensionless mass-flow rate have been obtained for a wide and not yet covered range of the Rayleigh number varying from 103 to 1016. The results obtained taking into account variable properties effects are compared with those calculated assuming constant properties and the Boussinesq approximation. For uniform heat flux heating, a correlation for the critical heating parameter above which the burnout phenomenon can be obtained is presented, not reported in previous works. The effects of variable properties on the flow patterns are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

b :

Width of the vent, m (Fig. 1)

C 1,C 2 :

Correlation factors

c p :

Specific heat at constant pressure, J kg−1 K−1

g :

Gravitational acceleration, m s−2

Gr H :

Grashof number for isothermal cases, gβ(T w  − T )H 3 2

Gr H :

Grashof number for heat flux cases, gβq H 4 2 κ

h x :

Local heat transfer coefficient, −κ(∂T/∂n) w /(T w  − T ), W m−2 K−1

I :

Turbulence intensity, Eq. 18

k :

Turbulent kinetic energy, Eq. 17, m2 s−2

H :

Height of the cavity (and the heated wall) (Fig. 1), m

L :

Length of the cavity (Fig. 1), m

L c :

Typical length, m

M :

Dimensionless mass-flow rate, mα

m :

Two-dimensional mass-flow rate, kg m−1s−1

n :

Coordinate perpendicular to wall, m

Nu H :

Average Nusselt number based on H, isothermal cases, Eq. 6

Nu H :

Average Nusselt number based on H, heat flux cases, Eq. 7

Nu x :

Local Nusselt number, h x H

P :

Average reduced pressure, N m−2

P T :

Total-average reduced pressure, N m−2

p :

Pressure, N m−2

Pr:

Prandtl number, μc p

q :

Wall heat flux, W m−2

R :

Constant of the gas, J kg−1 K−1

Ra H :

Rayleigh number based on H, (Gr H )(Pr)

S ij :

Mean-strain tensor, s−1

TT′:

Average and turbulent temperatures, respectively, K

\(-\overline{T'u_{j}}\) :

Average turbulent heat flux, K m s−1

U j u j :

Average and turbulent components of velocity, respectively, m s−1

\(-\overline{u_{i}u_{j}}\) :

Turbulent stress, m2 s−2

u τ :

Friction velocity, u τ = (τ w /ρ)1/2, m s−1

xy :

Cartesian coordinates in the vertical and horizontal directions, m

y + :

ρ y 1 u τ/μ, with y 1 the distance between the wall and the first grid point

α:

Thermal diffusivity, κ/ρ c p , m2 s−1

β:

Coefficient of thermal expansion, 1/T , K−1

δ ij :

Krönecker delta

δ T :

Thickness of the thermal boundary layer, m

ϕ:

Dependent variable

φ:

Correlation factor, Eq. 28

κ:

Thermal conductivity, W m−1 K−1

\(\Uplambda\) :

Heating parameter, Eqs. 2 and 4 for UWT and UHF heating, respectively

μ:

Viscosity, kg m−1 s−1

ν:

Kinematic viscosity, μ/ρ, m2 s−1

θ:

Dimensionless temperature difference, θ = (T − T )/(T w  − T )

ρ:

Density, kg m−3

τ w :

Wall shear stress, N m−2

ω:

Specific dissipation rate of k (or turbulent frequency), s−1

B :

Constant properties and Boussinesq approximation

c :

Critical value

l :

Laminar

max:

Maximum value

ref:

Reference mesh

t :

Turbulent

w :

Wall

∞:

Ambient or reference conditions

−:

Averaged value

DNS:

Direct numerical simulation

UHF:

Uniform heat flux

UWT:

Uniform wall temperature

References

  1. Ostrach S (1972) Natural convection in enclosures. In: Hartnett JP, Irvine TF (eds) Adv Heat Transfer 8:161–227

  2. Bejan A (1993) Heat transfer. Wiley, New York

    Google Scholar 

  3. Chan YL, Tien CL (1985) A numerical study of two-dimensional laminar natural convection in shallow open cavities. Int J Heat Mass Transfer 28:603–612

    Article  MATH  Google Scholar 

  4. Mohamad AA, Viskanta R (1989) An evaluation of different discretizacion schemes for natural convection of low-Prandtl number fluids in cavities. Num Heat Transfer B 16:179–192

    Article  Google Scholar 

  5. Bilgen E, Oztop H (2005) Natural convection heat transfer in partially open inclined square cavities. Int J Heat Mass Transfer 48:1470–1479

    Article  MATH  Google Scholar 

  6. Bilgen E, Balkaya A (2008) Natural convection on discrete heaters in a square enclosure with ventilation ports. Int J Heat Fluid Flow 29:1182–1189

    Article  Google Scholar 

  7. Bilgen E, Muftuoglu A (2008) Natural convection in an open square cavity with slots. Int Comm Heat Mass Transfer 35:896–900

    Article  Google Scholar 

  8. Muftuoglu A, Bilgen E (2008) Natural convection in an open square cavity with discrete heaters at their optimized positions. Int J Thermal Sci 47:369–377

    Article  Google Scholar 

  9. Khanafer K, Vafai K (2002) Effective boundary conditions for buoyancy-driven flows and heat transfer in fully open-ended two-dimensional enclosures. Int J Heat Mass Transfer 45:2527–2538

    Article  MATH  Google Scholar 

  10. Anil Lal S, Reji C (2009) Numerical prediction of natural convection in vented cavities using restricted domain approach. Int J Heat Mass Transfer 52:724–734

    Article  MATH  Google Scholar 

  11. Ben Yedder R, Bilgen E (1995) Turbulent natural convection and conduction in enclosures bounded by a massive wall. Int J Heat Mass Transfer 38:1879–1891

    Article  MATH  Google Scholar 

  12. Henkes RAWM, Hoogendorn CJ (1995) Comparison exercise for computations of turbulent natural convection in enclosures. Num Heat Transfer 28:59–78

    Article  Google Scholar 

  13. Bessaih R, Kadja M (2000) Turbulent natural convection of electronic components mounted on a vertical channel. Appl Therm Eng 20:141–154

    Article  Google Scholar 

  14. Xamán J, Tun J, Álvarex G, Chávez Y, Noh F (2009) Optimum ventilation based on the overall ventilation effectiveness for temperature distribution in ventilated cavities. Int J Therm Sci 48:1574–1585

    Article  Google Scholar 

  15. La Pica A, Rodonò G, Volpes R (1993) An experimental investigation on natural convection of air in a vertical channel. Int J Heat Mass Transfer 36:611–616

    Article  Google Scholar 

  16. Warrington RO, Ameel TA (1995) Experimental studies of natural convection in partitioned enclosures with a Trombe Wall geometry. J Solar Energy Eng 117:16–21

    Article  Google Scholar 

  17. Radhakrishnan TV, Balaji C, Venkateshan SP (2010) Optimization of multiple heaters in a vented enclosure—a combined numerical and experimental study. Int J Therm Sci 49:721–732

    Article  Google Scholar 

  18. Gray DD, Giorgini A (1976) The validity of the Boussinesq approximation for liquids and gases. Int J Heat Mass Transfer 19:545–551

    Article  MATH  Google Scholar 

  19. Zhong ZY, Yang KT, Lloyd JR (1985) Variable property effects in laminar natural convection in a square enclosure. J Heat Transfer 107:133–138

    Article  Google Scholar 

  20. Emery AF, Lee JW (1999) The effects of property variations on natural convection in a square enclosure. J Heat Transfer 121:57–62

    Article  Google Scholar 

  21. Chenoweth DR, Paolucci S (1986) Natural convection in an enclosed vertical air layer. J Fluid Mech 169:173–210

    Article  MATH  Google Scholar 

  22. Hernández J, Zamora B (2005) Effects of variable properties and non-uniform heating on natural convection flows in vertical channel. Int J Heat Mass Transfer 48:793–807

    Article  MATH  Google Scholar 

  23. Guo ZY, Wu XB (1993) Thermal drag and critical heat flux for natural convection of air in vertical parallel plates. J Heat Transfer 115:124–129

    Article  Google Scholar 

  24. Guo ZY, Song YZ, Li ZX (1995) Lase spleckle photography in heat transfer studies. Exp Therm Fluid Sci 10:1–16

    Article  Google Scholar 

  25. Abu-Nada E, Masoud Z, Oztop HF, Campo A (2010) Effect of nanofluid variable properties on natural convection in enclosures. Int J Therm Sci 49:479–491

    Article  Google Scholar 

  26. Morrone B, Campo A (2010) Influence of intense symmetric heating and variable physical properties on the thermo-buoyant airflow inside vertical parallel-plate channels. J Heat Transfer 132. doi:10.1115/1.4001932

  27. Zamora B, Kaiser AS, Viedma A (2008) On the effects of Rayleigh number and inlet turbulence intensity upon the buoyancy-induced mass flow rate in sloping and convergent channels. Int J Heat Mass Transfer 51:4985–5000

    Article  MATH  Google Scholar 

  28. Zamora B, Kaiser AS (2009) Thermal and dynamic optimization of the convective flow in Trombe Wall shaped channels by numerical investigation. Heat Mass Transfer 45:1393–1407

    Article  Google Scholar 

  29. Sparrow EM, Gregg JL (1958) The variable fluid property problem in free convection. J Heat Transfer 80:879–886

    Google Scholar 

  30. Kolmogorov AN (1942) Equations of turbulent motion of an incompressible fluid. Izvestia Acad Sci USSR Phys 6:56–58

    Google Scholar 

  31. Wilcox DC (2003) Turbulence modeling for CFD. 2nd edn. DCW Industries, USA

    Google Scholar 

  32. Van Leer B (1979) Towards the ultimate conservative difference scheme V. A second order sequel to Gadunov’s method. J Comput Phys 32:101–136

    Article  Google Scholar 

  33. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comp Meth Appl Mech Eng 19:59–98

    Article  MATH  Google Scholar 

  34. Versteegh TA, Nieuwstadt FT (1999) A direct numerical simulation of natural convection between two infinite vertical differentially heated walls scaling laws and wall functions. Int J Heat Mass Transfer 42:3673–3693

    Article  MATH  Google Scholar 

  35. Zamora B, Hernández J (1997) Influence of variable property effects on natural convection flows in asymmetrically-heated vertical channels. Int Comm Heat Mass Transfer 24:1153–1162

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge to Prof. J. Hernández (UNED, Spain), for his great teachings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blas Zamora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zamora, B., Kaiser, A.S. Influence of the variable thermophysical properties on the turbulent buoyancy-driven airflow inside open square cavities. Heat Mass Transfer 48, 35–53 (2012). https://doi.org/10.1007/s00231-011-0838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-011-0838-0

Keywords

Navigation