Skip to main content
Log in

Transient conjugate heat transfer from a hemispherical plate during free liquid jet impingement on the convex surface

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper considers the analysis of transient heating of a hemispherical solid plate of finite thickness during impingement of a free liquid jet. A constant heat flux was imposed at the inner surface of the hemispherical plate at t = 0 and heat transfer was monitored for the entire duration of the transient until a steady state condition was reached. Calculations were done for Reynolds number (Re) ranging from 500 to 1,500 and dimensionless plate thicknesses to nozzle diameter ratio (b/d n) from 0.083 to 1.5. Results are presented for local and average Nusselt number using water as the coolant and various solid materials such as silicon, constantan, and copper. It was detected that increasing the Reynolds number decreases the time for the plate to achieve the steady-state condition. Also, a higher Reynolds number increases the Nusselt number. Hemispherical plate materials with higher thermal conductivity maintain lower temperature non-uniformity at the solid–fluid interface. Increasing the plate thickness decreases the maximum temperature in the solid and increases the time to reach the steady-state condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

b :

Plate thickness, ro–ri [m]

d n :

Diameter of the nozzle [m]

Fo:

Fourier number, α f t/d 2n

g :

Acceleration due to gravity [m/s2]

h :

Heat transfer coefficient [W/m2K], qint/(T intT j)

h av :

Average heat transfer coefficient [W/m2K], defined by equation (16)

H n :

Distance of the nozzle from the point of impingement [m]

k :

Thermal conductivity [W/m K]

Nu:

Nusselt number (h·d n)/k f

Nuav :

Average Nusselt number for the entire surface (h av·d n)/k f

p :

Pressure [Pa]

q :

Heat flux [W/m2]

q av :

Average heat flux [W/m2]

r :

Radial coordinate [m]

r i :

Inner radius of hemisphere [m]

r o :

Outer radius of hemisphere [m]

Re :

Reynolds number (V J·d n)/ν f

s:

Coordinate along the arc length, r o Φ [m]

t :

Time [s]

T :

Temperature [K]

V J :

Jet velocity [m/s]

V r,z :

Velocity component in the r, z-direction [m/s]

z:

Axial coordinate [m]

α :

Thermal diffusivity [m2/s]

δ :

Liquid film thickness [m]

ν :

Kinematic viscosity [m2/s]

Θ:

Dimensionless temperature, 2·kf ·(Tint –Tj)/(qw·dn)

Φ:

Azimuthal coordinate [rad]

ρ :

Density [kg/m3]

atm:

Ambient

av:

Average

f:

Fluid

int:

Solid–fluid interface

j:

Jet or inlet

i:

Initial condition

max:

Maximum

n:

Nozzle

s:

Solid

SS:

Steady state

w:

Inner surface of hemisphere

References

  1. Stevens J, Webb BW (1989) Local heat transfer coefficients under an axisymmetric, single phase liquid jet. Heat Transfer in Electronics ASME/HTD 111:113–119

    Google Scholar 

  2. Garimella SV, Rice RA (1995) Confined and submerged liquid jet impingement heat transfer. J Heat Transf 117:871–877

    Article  Google Scholar 

  3. Gomi T, Webb BW (1997) Local characteristics of impingement heat transfer with oblique round free-surface jets of large Prandtl number liquid. Int J Heat Mass Transf 40(10):2249–2259

    Article  Google Scholar 

  4. Tong AY (2003) A numerical study on the hydrodynamics and heat transfer of a circular liquid jet impinging onto a substrate. Numer Heat Transf Part A 44:1–19

    Article  Google Scholar 

  5. Yilbas BS, Shuja SZ, Budair MO (2003) Jet impingement onto a hole with constant wall temperature. Numer Heat Transf Part A 43:843–865

    Article  Google Scholar 

  6. Lee DH, Chung YS, Kim DS (1997) Turbulent flow and heat transfer measurements on a curved surface with a fully developed round impinging jet. Int J Heat Fluid Flow 18:160–169

    Article  Google Scholar 

  7. Kornblum Y, Goldstein RJ (1997) Jet impingement on semicylindirical concave and convex surfaces: Part II—Heat transfer. International Symposium on Physics of Heat Transfer in Boiling and Condensation 597–602

  8. Lee DH, Chung YS, Kim MG (1999) Turbulent heat transfer from a convex hemispherical surface to a round impinging jet. Int JHeat Mass Transf 42:1147–1156

    Article  Google Scholar 

  9. Cornaro C, Fleischer AS, Goldstein RJ (1999) Flow visualization of a round jet impinging on cylindrical surfaces. Exp Therm Fluid Sci 20:66–78

    Article  Google Scholar 

  10. Cornaro C, Fleischer AS, Rounds M, Goldstein RJ (2001) Jet impingement cooling of a convex semi-cylindrical surface. Int J Therm Sci 40:890–898

    Article  Google Scholar 

  11. Fleischer AS, Kramer K, Goldstein RJ (2001) Dynamics of the vortex structure of a jet impinging on a convex surface. Exp Therm Fluid Sci 24:169–175

    Article  Google Scholar 

  12. Van Treuren KW, Wang Z, Ireland PT, Jones TV (1994) Detailed measurements of local heat transfer coefficient and adiabatic wall temperature beneath an array of impinging jets. J Turbomach 116(3):369–374

    Article  Google Scholar 

  13. Owens R, Liburdy JA (1995) Use of thermochromatic liquid crystals in the study of jet impingement cooling: sensitivity of transient heating methods. In: Proceedings of SPIE, The International Society of Optical Engineering, Bellingham, WA, USA, pp 136–144

  14. Kumagai S, Suzuki S, Kubo R, Kawazoe M (1995) Transient cooling of a hot metal plate with an impinging water jet. Heat Transf-Jpn Res 24(6):538–550

    Google Scholar 

  15. Francis ND, Wepfer WJ (1996) Jet impingement drying of a moist porous solid. Int J Heat Mass Transf 39(9):1911–1923

    Article  Google Scholar 

  16. Rahman MM, Bula AJ, Leland JE (2000) Analysis of transient conjugate heat transfer to a free impinging jet. J Thermophys Heat Transf 14(3):330–339

    Article  Google Scholar 

  17. Aldabbagh LBY, Sezai I, Mohamad AA (2003) Three-dimensional investigation of a laminar impinging square jet interaction with cross-flow. J Heat Transf 125:243–249

    Article  Google Scholar 

  18. Bula AJ, Rahman MM (2004) Transient thermal management of microelectronics using free liquid jet impingement. In: Proceedings of IMECE2004, Anaheim, CA, USA, pp 13–20

  19. Liu LK, Su WS, Hung YH (2004) Transient convective heat transfer of air jet impinging onto a confined ceramic-based MCM disk. J Electron Packag 126(1):159–172

    Article  Google Scholar 

  20. Sarghini F, Ruocco G (2004) Enhancement and reversal heat transfer by competing modes in jet impingement. Int J Heat Mass Transf 47(8–9):1711–1718

    Article  Google Scholar 

  21. Kuo YM, Fang CJ, Wu MC, Peng CH, Hung YH (2005) Convective heat transfer from a stationary or rotating MCM disk with a unconfined round jet impingement. In: Proceedings of IMECE2005, Orlando, FL, USA, pp 5–11

  22. Wang T, Lin M, Bunker RS (2005) Flow and heat transfer of confined impingement jets cooling using a 3-D transient liquid crystal scheme. Int J Heat Mass Transf 48(23–24):4887–4903

    Article  Google Scholar 

  23. Baonga JB, Louahlia–Gualous H, Imbert M (2006) Experimental study of the hydrodynamics and heat transfer of free liquid jet impinging a flat circular heated disk. Appl Therm Eng 26:1125–1138

    Article  Google Scholar 

  24. Chang SW, Jan YJ, Chang SF (2006) Heat transfer of impinging jet–array over convex–dimpled surface. Int J Heat Mass Transf 49:3045–3059

    Article  Google Scholar 

  25. Lee CH, Lim KB, Lee SH, Yoon YJ, Sung NW (2007) A study of the heat transfer characteristics of turbulent round jet impinging on an inclined concave surface using liquid crystal transient method. Exp Thermal Fluid Sci 31(6):559–565

    Article  Google Scholar 

  26. Yang YT, Tsai SY (2007) Numerical study of transient conjugate heat transfer of a turbulent impinging jet. Int J Heat Mass Transf 50(5–6):799–807

    Article  MATH  Google Scholar 

  27. Aldabbagh LBY, Mohamad AA (2007) Effect of jet-to-plate spacing in laminar array jets impinging. Heat Mass Transf 43:265–273

    Article  Google Scholar 

  28. Rahman MM, Lallave JC, Hernandez CF (2008) Convective heat transfer from a thick hemispherical plate during free liquid jet impingement. Numer Heat Transf Part A 54:581–602

    Article  Google Scholar 

  29. Aldabbagh LBY, Mohamad AA (2009) Mixed convection in an impinging laminar single square jet. J Heat Transf 131:022201-1–022201-7

    Article  Google Scholar 

  30. Aldabbagh LBY, Mohamad AA (2009) A three-dimensional numerical simulation of impinging jet arrays on a moving plate. Int J Heat Mass Transf 52:4894–4900

    Article  MATH  Google Scholar 

  31. White FM (2003) Fluid Mechanics, 5th edn. McGraw-Hill, New York

    Google Scholar 

  32. Fletcher CAJ (1984) Computational Galerkin methods. Springer-Verlag, New York

    MATH  Google Scholar 

  33. Liu X, Lienhard JH, Lombara JS (1991) Convective heat transfer by impingement of circular liquid jets. J Heat Transf 13:571–582

    Article  Google Scholar 

  34. Scholtz MT, Trass O (1970) Mass transfer in a nonuniform impinging jet. AIChE J 26:82–96

    Article  Google Scholar 

  35. Nakoryakov VE, Pokusaev BG, Troyan EN (1978) Impingement of an axisymmetric liquid jet on a barrier. Int J Heat Mass Transf 9:1175–1184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad M. Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.M., Hernandez, C.F. Transient conjugate heat transfer from a hemispherical plate during free liquid jet impingement on the convex surface. Heat Mass Transfer 47, 69–80 (2011). https://doi.org/10.1007/s00231-010-0670-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0670-y

Keywords

Navigation