Skip to main content
Log in

Simulation of boiling heat transfer in small heaters by a coupled cellular and geometrical automata

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Automata are entities defined by mathematical states that change following iterative rules representing neighborhood interactions. A model of automata for pool boiling heat transfer simulation consisting in collections of virtual spheres that change their volumes and move around a certain environment is presented. The approach is an alternative technique to describe the turbulent features of boiling phenomena, such as interfacial topological transitions and fluid-wall interaction. The novel computer model presented here is able to capture the essential features underlying boiling heat transfer and crisis above a small heater, showing good agreement with experimental data reported in the open literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A l :

Fraction of area in direct contact with the liquid

c mc :

Microconvection constant

g :

Gravity acceleration

H :

Convection heat transfer coefficient

h fg :

Latent heat of evaporation

Ja :

Jakob number

k l :

Liquid conduction heat coefficient

k m :

Metal conduction heat coefficient

L :

Characteristic cell length

L c :

Channel length

Nu :

Nusselt number

p :

Breakup probability per time unit

P :

Cell perimeter

p b :

Breakup coefficient (0 < p b  < 1)

Pr :

Prandtl number

\( \dot{q} \) :

Volumetric heat source

q c :

Convection associated heat

q mc :

Microconvection associated heat

q ml :

Microlayer theory associated heat

r :

Bubble radius

r 0 :

Previous bubble radius

Ra :

Rayleigh number

r c :

Critical bubble radius

R cav :

Cavity radius

r d :

Detachment bubble radius

t :

Time

T :

Cellular automata temperature

T sat :

Saturation temperature

T w :

Wall temperature

α l :

Liquid thermal diffusivity

β :

Volumetric thermal expansion coefficient

Δ:

Cell side

Δt :

Time that went since the last bubble detachment

ε :

Heater emissivity

ϕ :

Contact angle

ν :

Liquid kinematic viscosity

σ :

Surface tension coefficient

σ rad :

Stefan–Boltzmann constant

ρ l :

Liquid density

ρ v :

Vapor density

τ :

Time lag associated to each change

References

  1. Wallis G (1969) One-dimensional two-phase flow, chap 2. McGraw-Hill, New York

  2. Zuber N, Findlay J (1965) Average volumetric concentration in two-phase systems. J Heat Transf 87:453–468

    Google Scholar 

  3. Cooper N (ed) (1987) Los Alamos science special issue. Los Alamos National Laboratory, New Mexico

  4. Ulam S (1958) John von Neumann, 1903–1957. Bull Am Math Soc 64:1–49

    Article  MathSciNet  Google Scholar 

  5. Wolfram S (1986) Cellular automata fluids. J Stat Phys 45:3–4

    Article  MathSciNet  Google Scholar 

  6. Herault A, Vicari A, Ciraudo A, Del Negro C (2008) Forecasting lava flow hazards during the 2006 Etna eruption: using the MAGFLOW cellular automata model. Comput Geosci (in press)

  7. Fan Y, Ying S, Wang B, Wei Y (2008) The effect of investor psychology on the complexity of stock market: an analysis based on cellular automaton model computers and industrial engineering (in press)

  8. Slimi R, El Yacoubi S, Dumonteil E, Gourbière S (2008) A cellular automata model for Chagas disease. Appl Math Model (in press)

  9. Shoham Y (1993) Agent-oriented programming. Artif Intell 60:51–92

    Article  MathSciNet  Google Scholar 

  10. Meyer B (1997) Object-oriented software construction, 2nd edn. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  11. Herrero V, Guido-Lavalle G, Clausse A (1996) Geometrical automata for two phase flow simulation. Nucl Eng Des 163:117–124

    Article  Google Scholar 

  12. Jing Y, Guo L, Zhang X (2003) A numerical simulation of pool boiling using CAS model. Int J Heat Mass Transf 46:4789–4797

    Article  Google Scholar 

  13. Chen T, Chung JN (2002) Coalescence of bubbles in nucleate boiling on microheaters. Int J Heat Mass Transf 45:2329–2341

    Article  Google Scholar 

  14. Booch G (1991) Object oriented with applications. Benjamin/Cummings Publishing Company, Inc., Redwood City

    Google Scholar 

  15. Leidenfrost JG (1966) De aquae communis nonnullis qualitatibus tractatus (A tract about some qualities of common water), Duisburg, 1756; The pertinent portions are reprinted in translation in Int J Heat Mass Transf 9:1153

    Google Scholar 

  16. Nukiyama S (1966) The maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. Int J Heat Mass Transf 9:1419

    Article  Google Scholar 

  17. Forster HK, Zuber N (1955) Dynamics of vapor bubbles and boiling heat transfer. AIChE J 1(4):531–535

    Article  Google Scholar 

  18. Forster KE, Greif R (1959) Heat transfer to a boiling liquid mechanism and correlations. J Heat Transf 81:43–53

    Google Scholar 

  19. Han CY, Griffith P (1965) The mechanism of heat transfer in nucleate pool boiling. Int J Heat Mass Transf 8:887–914

    Article  MATH  Google Scholar 

  20. Mikic BB, Rohsenow WM (1969) A new correlation of pool boiling data including the effect of heating surface characteristics. J Heat Transf Trans ASME 91:245–250

    Google Scholar 

  21. Snyder NW (1956) Summary of conference on bubble dynamics and boiling heat transfer, JPL memo 20-137, Jet Propulsion laboratory, California Institute of Technology

  22. Kutateladze SS, Leont’ev AI (1966) Some applications of the asymptotic theory of the turbulent boundary layer. In: Proceedings of the 3rd international heat transfer conference, New York

  23. Thorgeson EJ, Knoebel DH, Gibbons JH (1974) A model to predict convective subcooled critical heat flux. J Heat Transf 96:79–82

    Article  Google Scholar 

  24. Katto Y, Yokoya S (1968) Principal mechanism of boiling crisis in pool boiling. Int J Heat Mass Transf 11:993–1002

    Article  Google Scholar 

  25. Matorin AS (1973) Correlation of experimental data on heat transfer crisis in pool boiling of pure liquids and binary mixtures. Heat Transfer Sov Res 5:85

    Google Scholar 

  26. Costello CP, Book CO, Nichols CN (1963) A study of induced convective effects on saturated pool boiling burnout. Chem Eng Prog Symp Ser 61:271

    Google Scholar 

  27. Tong LS (1972) Boiling crisis and critical heat flux. AEC Critical Review Series, USAEC

  28. Whalley PB, Hutchinson P, Hewitt GF (1974) Calculation of critical heat flux in forced convection boiling. In: 5th International heat transfer conference, Tokyo

  29. Lahey R Jr (ed) (1992) Boiling phenomena. Elsevier, Amsterdam, pp 86–91

  30. Carrica P, Clausse A (1994) A mathematical model of local boiling nonlinear dynamics and crisis. Lat Am J Appl Res 24:77–83

    Google Scholar 

  31. Van Stralen S, Cole R (1979) Boiling phenomena, vol 1. McGraw-Hill, NY, 130 pp

  32. Cooper M (1970) The microlayer and bubble growth in nucleate pool boiling. Int J Heat Mass Transf 13:656–666

    Google Scholar 

  33. Cooper M, Lloyd J (1970) Transient local heat flux in nucleate boiling. In: Proceedings of the 3rd international heat transfer conference, Chicago, vol 3, B2.1. Elsevier, Amsterdam

  34. Cooper M, Lloyd J (1969) The microlayer in nucleate pool boiling. Int J Heat Mass Transf 12:895–913

    Article  Google Scholar 

  35. Cooper M, Vijuk R (1970) Bubble growth in nucleate pool boiling. In: Proceedings of the 4th international heat transfer conference, Paris, Versailles, vol 5, B2.1. Elsevier, Amsterdam

  36. Fritz W (1935) Berechnung des Maximalvolumens von Dampfblasen. Physics 36:379–384

    Google Scholar 

  37. McAdams W (1954) Heat transmission, chap 4, 3rd edn. McGraw-Hill, New York

  38. Goldstein R, Sparrow E, Jones D (1973) Natural convection mass transfer adjacent to horizontal plates. Int J Heat Mass Transf 16:1025–1030

    Article  Google Scholar 

  39. Lloyd J, Moran W (1974) Natural convection mass transfer adjacent to horizontal surfaces of various platforms. ASME, 4-WA/HT-66

  40. Van Stralen S, Cole R (1979) Boiling phenomena, vol 2. McGraw-Hill, New York, pp 456–458

    Google Scholar 

  41. Lahey R Jr (ed) (1992) Boiling phenomena. Elsevier, Amsterdam, pp 402–404

  42. Incropera F, Dewitt D (2006) Fundamentals of heat and mass transfer, 5th edn. Wiley, New York

    Google Scholar 

  43. Stephan P, Fuchs T (2009) Local heat flow and temperature fluctuations in wall and fluid in nucleate boiling systems. Heat Mass Transf 45:919–928

    Article  Google Scholar 

  44. Golobic I, Petkovsek J, Baselj M, Papez A, Kenning DBR (2009) Experimental determination of transient wall temperature distributions close to growing vapor bubbles. Heat Mass Transf 45:857–866

    Article  Google Scholar 

  45. Chen T, Chung JN (2002) Coalescence of bubbles in nucleate boiling on microheaters. Int J Heat Mass Transf 45:2329–2341

    Article  Google Scholar 

  46. Marcel CP, Rohde M, Van der Hagen THJJ (2008) Fluid-to-fluid modeling of natural circulation boiling loops for stability analysis. Int J Heat Mass Transf 51:566–575

    Article  MATH  Google Scholar 

  47. Serizawa A, Kataoka I, Michiyoshi I (1975) Turbulence structure of air–water bubbly flow—II. Local properties. Int J Multiph Flow 2:235–246

    Article  Google Scholar 

  48. Žun I (1980) The transverse migration of bubbles influenced by walls in vertical bubbly flow. Int J Multiph Flow 6:583–588

    Article  Google Scholar 

  49. Wang SK, Lee SJ, Jones OC Jr, Lathey RT Jr (1987) 3-D turbulence structure and phase distribution measurements in bubbly two phase flows. Int J Multiph Flow 13:327–343

    Article  Google Scholar 

  50. Buchholz M, Lüttich T, Auracher H, Marquardt W (2004) Experimental investigation of local processes in pool boiling along the entire boiling curve. Int J Heat Fluid Flow 25:243–261

    Article  Google Scholar 

  51. Van Stralen S, Cole R (1979) Boiling phenomena, vol 2. McGraw-Hill, New York, 632 pp

  52. Gupta A, Ghoshdastidar P (2006) A three-dimensional numerical modeling of atmospheric pool boiling by the coupled map lattice method. ASME J Heat Transf 128:1149–1158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Marcel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcel, C., Bonetto, F. & Clausse, A. Simulation of boiling heat transfer in small heaters by a coupled cellular and geometrical automata. Heat Mass Transfer 47, 13–25 (2011). https://doi.org/10.1007/s00231-010-0667-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0667-6

Keywords

Navigation