Skip to main content
Log in

Development and test of a numerical model for pulse thermography in civil engineering

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Pulse thermography of concrete structures is used in civil engineering for detecting voids, honeycombing and delamination. Quantitatively realistic numerical 3D simulation is difficult due to the arising boundary layer at the heated surface and unreliable information about material parameters and environmental conditions. We address both issues by a semi-analytic reformulation of the heat transport problem and by parameter identification. Numerical results are compared with measurements of a test specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

c :

Specific heat capacity distribution (J/kg K)

\(\bar{c}\) :

Surface averaged specific heat capacity (J/kg K)

C :

Radiation constant distribution (W/m2 K4)

\(\bar{C}\) :

Averaged radiation constant (W/m2 K4)

g :

Total boundary heat flux (W/m2)

h :

Heat transfer coefficient distribution (W/m2 K)

\(\bar{h}\) :

Averaged heat transfer coefficient (W/m2 K)

P 0 :

Steradial heating power density (W/m2)

Q 0 :

Power density of radiative heating (W/m2)

t :

Time (s)

t h :

Heating time (s)

T :

Temperature (K)

T amb :

Ambient temperature (K)

T ext :

External temperature distribution (K)

T 0 :

Initial temperature distribution (K)

x = (x1x2x3):

Spatial position (m)

κ:

Thermal conductivity distribution (W/m K)

\(\bar{\kappa}\) :

Surface averaged thermal conductivity (W/m K)

Ω:

Computational domain

Ω0 :

Heated front face of Ω

ρ:

Density distribution (kg/m3)

\(\bar{\rho}\) :

Surface averaged density (kg/m3)

References

  1. Maldague X (2001) Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley, London

  2. Lugin S, Netzelmann U (2007) A defect shape reconstruction algorithm for pulsed thermography. NDT & E Int 40(3):220–228

    Article  Google Scholar 

  3. Hohage T, Rap’un ML, Sayas FJ (2007) Detecting corrosion using thermal measurements. Inverse Probl 23:53–72

    Article  MATH  MathSciNet  Google Scholar 

  4. Marcuzzi F, Marinetti S (2008) Efficient reconstruction of corrosion proles by infrared thermography. J Phys Conf Ser 124:012033

    Google Scholar 

  5. Carslaw HS, Jaeger J (1959) Conduction of heat in solids, 2 edn. Clarendon Press, Oxford

  6. Wedler G, Brink A, Maierhofer C, Röllig M, Weritz F, Wiggenhauser H (2003) Active infrared thermography in civil engineering—quantitative analysis by numerical simulation. In: International Symposium on Non-Destructive Testing in Civil Engineering. NDT-CE, Berlin

  7. Brink A (2005) Einsatz der Impuls-Thermografie zur quantitativen zerstörungsfreiein Prüfung im Bauwesen. Ph.D. thesis, TU Berlin

  8. Krishnapillaia M, Jonesa R, Marshalla I, Bannisterb M, Rajicc N (2006) NDTE using pulse thermography: Numerical modeling of composite subsurface defects. Compos Struct 75:241–249

    Article  Google Scholar 

  9. Chaudhuri P, Santra P, Yoele S, Prakash A, Reddy D, Lachhvani L, Govindarajan J, Saxena Y (2006) Non-destructive evaluation of brazed joints between cooling tube and heat sink by IR thermography and its verification using FE analysis. NDT&E Int 39:88–95

    Article  Google Scholar 

  10. Vavilov V, Klimov A (2002) Studying the phenomena related to the IR thermographic detection of buried landmines. In: Sixth International Conference on Quantitative Infrared Thermography. Dubrovnik, Croatia

  11. Susa M, Ibarra-Castanedo C, Maldague X, Svaic S, Boras I, Bendada A (2007) Pulse thermography applied on a complex structure sample: comparison and analysis of numerical and experimental results. In: Fourth Pan American Conference in END. Buenos Aires, Argentina

  12. Maierhofer C, Arndt R, Röllig M, Brink A, Wiggenhauser H, Hillemeier B, Rieck C, Walther A, Scheel H (2005) Abschlussbericht zum DFG-Projekt Struktur- und Feuchteuntersuchungen von Bauteil- und Bauwerksoberflächen mit der Impulsthermographie, Teil 1 und Teil 2. Tech. rep., BAM

  13. Maierhofer C, Brink A, Röllig M, Wiggenhauser H (2005) Quantitative impulse-thermography as non-destructive testing method in civil engineering—experimental results and numerical simulations. Construction and Building Materials 19(10), 731–737 (2005). Non Destructive Testing: Selected papers from Structural Faults and Repair 2003

  14. Linz P (1985) Analytical and Numerical Methods for Volterra Equations. Studies in Applied Mathematics. SIAM

  15. Vavilov V, Klujev V (eds.) (2004) Nondestructive testing, vol. 5. Maschinostroenie (2004). Russian original

  16. Lang J (2001) Adaptive multilevel solution of nonlinear parabolic PDE systems, lecture notes in computational science and engineering, vol. 16. Springer, Berlin

  17. Deuflhard P (2004) Newton methods for nonlinear problems. Affine invariance and adaptive algorithms, computational mathematics, vol. 35. Springer, Berlin

Download references

Acknowledgments

The authors would like to thank M. Zänker for contributing to Sect. 5 and C. Nowzohour for contributing to Sect. 3. Partial support by the DFG Research Center Matheon “Mathematics for key technologies”, project C25, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Weiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiser, M., Röllig, M., Arndt, R. et al. Development and test of a numerical model for pulse thermography in civil engineering. Heat Mass Transfer 46, 1419–1428 (2010). https://doi.org/10.1007/s00231-010-0656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0656-9

Keywords

Navigation