Skip to main content
Log in

Axial conduction effect in flow through circular porous passages with prescribed wall heat flux

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This study presents a series solution for computation of the steady state temperature field in circular ducts with prescribed wall heat flux. The ducts are filled with fluid saturated porous materials. The developed methodology includes a simple transformation that improves the convergence of this series solution. The acquired solution includes the contribution of axial conduction that leads to a modified Graetz-type solution for these fluid passages. Finally, this solution is augmented by the contribution of frictional heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

A m , B m :

Coefficient in a series

Br :

Brinkman number \( \mu_{e} U^{2} /(r_{0} q_{w} ) \)

c n :

Constants in Eq. 10

c p :

Fluid specific heat (J/kg K)

Da :

The Darcy number K/r 20

D h :

Hydraulic diameter 2r 0 (m)

F :

Transformation function, Eq. 6c

h :

Heat transfer coefficient (W/m2 K)

k :

Effective thermal conductivity (W/m K)

I i , K i :

Modified Bessel functions with i = 0, 1 or 2

K :

Permeability (m2)

m, n:

Indices

Nu D :

hD h /k

Pe :

Peclet number Ur 0/α

Pr :

Prandtl number μc p /k

q w :

Wall heat flux when x ≥ 0 (W/m2)

r :

\( \hat{r}/r_{0} \)

r 0 :

Circular duct’s radius

\( \hat{r} \) :

Radial coordinate (m)

R :

Eigenfunction

St :

Stanton number h/(ρc p U), Eq. 15c

T i :

Fluid temperature as x → −∞ (K)

T w :

Wall temperature (K)

u :

Velocity (m/s)

U :

Average velocity (m/s)

x :

\( \hat{x}/r_{\,0} \)

\( \hat{x} \) :

Axial coordinate (m)

\( \bar{x} \) :

\( (\hat{x}/r_{{{\kern 1pt} 0}} )/Pe \)

α :

Thermal diffusivity (m2/s)

β m :

Eigenvalues

θ :

Transformed temperature, Eqs. 6a, 6b

θ *:

k(T − T i )/q w r0

λ m :

Eigenvalues

μ :

Fluid viscosity (N s/m2)

μ e :

Effective viscosity (N s/m2)

ρ :

Fluid density (kg/m3)

Φ m :

Eigenfunction R m (r) when x < 0

Ψ m :

Eigenfunction R m (r) when x ≥ 0

σ :

Parameter Pe/2

ω :

\( {1 \mathord{\left/ {\vphantom {1 {\sqrt {MDa} }}} \right. \kern-\nulldelimiterspace} {\sqrt {MDa} }} \)

1, 2:

x < 0 or x ≥ 0

b :

Bulk temperature

s :

Source

w :

Condition at the wall

References

  1. Minkowycz WJ, Haji-Sheikh A (2006) Heat transfer in parallel-plate and circular porous passages with axial conduction. Int J Heat Mass Transf 49(13–14):2381–2390

    Article  MATH  Google Scholar 

  2. Magyari E, Barletta A (2007) Analytical series solution for the fully developed forced convection duct flow with frictional heating and variable viscosity. Heat Mass Transf 44(2):251–259

    Article  Google Scholar 

  3. Kays WM, Perkin ME (1973) Forced convection, internal flow in ducts, Section 7. In: Rohsenow WM, Hartnett JP (eds) Handbook of heat transfer. McGraw-Hill, New York

    Google Scholar 

  4. Shah RK, London AL (1978) Laminar flow forced convection in ducts, supplement 1 to advances in heat transfer. Academic Press, New York

    Google Scholar 

  5. Kays WM, Crawford HC (1993) Convective heat and mass transfer, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  6. Burmeister LC (1993) Convective heat transfer, 2nd edn. Wiley, New York

    Google Scholar 

  7. Bejan A (1982) Convection heat transfer, 2nd edn. Wiley, New York

    Google Scholar 

  8. Lahjomr J, Oubarra A (1999) Analytical solution of the Graetz problem with axial conduction. ASME J Heat Transf 121(4):1078–1083

    Article  Google Scholar 

  9. Lahjomri J, Oubarra A, Alemany A (2002) Heat transfer by laminar Hartmann flow in thermal entrance region with a step change in wall temperature: the Graetz problem extended. Int J Heat Mass Transf 45(5):1127–1148

    Article  MATH  Google Scholar 

  10. Weigand B, Lauffer D (2004) The extended Graetz problem with piecewise constant wall temperature for pipe and channel flows. Int J Heat Mass Transf 47(24):5303–5312

    Article  MATH  Google Scholar 

  11. Michelsen ML, Villadsen J (1974) The Graetz problem with axial heat conduction. Int J Heat Mass Transf 17(11):1391–1402

    Article  MATH  Google Scholar 

  12. Kuznetsov AV, Xiong M, Nield DA (2003) Thermally developing forced convection in a porous medium: circular ducts with walls at constant temperature, with longitudinal conduction and viscous dissipation effects. Transp Porous Med 53(3):331–345

    Article  MathSciNet  Google Scholar 

  13. Nield DA, Kuznetsov AV, Xiong M (2003) Thermally developing forced convection in a porous medium: parallel plate channel with walls at uniform temperature, with axial conduction and viscous dissipation effects. Int J Heat Mass Transf 46(4):643–651

    Article  MATH  Google Scholar 

  14. Lelea D (2007) The conjugate heat transfer of the partially heated microchannels. Heat Mass Transf 44(1):33–41

    Article  Google Scholar 

  15. Tiselj I, Hetsroni G, Mavko B, Mosyak A, Pogrebnyak E, Segal Z (2004) Effect of axial conduction on the heat transfer in micro-channels. Int J Heat Mass Transf 47(12–13):2551–2565

    Article  Google Scholar 

  16. Erbay LB, Yalçin MM, Ercan MS (2007) Entropy generation in parallel plate microchannels. Heat Mass Transf 43(8):729–739

    Article  Google Scholar 

  17. Papoutsakis E, Ramkrishna D, Lim HC (1980) The extended Graetz problem with prescribed wall flux. AIChE J 26(5):779–787

    Article  MathSciNet  Google Scholar 

  18. Papoutsakis E (1981) Nusselt numbers near entrance of heat-exchange section in flow systems. AIChE J 27(4):687–689

    Article  Google Scholar 

  19. Akins RG, Dranoff JS (1963) Experimental study of laminar flow heat transfer with prescribed wall heat flux. IChE J 9(5):624–629

    Google Scholar 

  20. Haji-Sheikh A, Beck JV (2008) Entrance heat transfer in rectangular ducts with constant axial energy input. Int J Heat Mass Transf 51(3–4):434–444

    Article  MATH  Google Scholar 

  21. Haji-Sheikh A, Nield DA, Hooman K (2006) Heat transfer in the thermal entrance region for flow through rectangular porous passages. Int J Heat Mass Transf 49(17–18):3004–3015

    Article  MATH  Google Scholar 

  22. Hooman K, Haji-Sheikh A (2007) Analysis of heat transfer and entropy generation for a thermally developing Brinkman–Brinkman forced convection problem in a rectangular duct with isoflux walls. Int J Heat Mass Transf 50(21–22):4180–4194

    Article  MATH  Google Scholar 

  23. Faghri M, Welty JR (1978) Analysis of transfer, including axial fluid conduction, for laminar tube flow with arbitrary circumferential wall heat flux variation. Int J Heat Mass Transf 21(3):317–323

    Article  Google Scholar 

  24. Nagasue H (1981) Steady-state heat transfer with axial conduction in laminar flow in a circular tube with a specified temperature or heat flux wall. Int J Heat Mass Transf 24(11):1823–1832

    Article  MATH  Google Scholar 

  25. Najjar RG, Laohakul C (1986) An approximate solution to the Graetz problem with axial conduction and prescribed wall heat flux. Int Comm Heat Mass Transf 13(3):315–324

    Article  Google Scholar 

  26. Tada S, Ichimiya K (2007) Analysis of laminar dissipative flow and heat transfer in porous saturated circular tube with constant wall heat flux. Int J Heat Mass Transf 50(11–12):2406–2413

    Article  MATH  Google Scholar 

  27. Tada S, Ichimiya K (2007) Numerical simulation of forced convection in a porous circular tube with constant wall heat flux: an extended Graetz problem with viscous dissipation. Chem Eng Tech 30(10):1362–1368

    Article  Google Scholar 

  28. Haji-Sheikh A, Amos DE, Beck JV (2009) Temperature field in a moving semi-infinite region with a prescribed wall heat flux. Int J Heat Mass Transf 51(7–8):2092–2101

    Article  Google Scholar 

  29. Haji-Sheikh A, Vafai K (2004) Analysis of flow and heat transfer in porous media imbedded inside various-shaped ducts. Int J Heat Mass Transf 47(8–9):1889–1905

    Article  MATH  Google Scholar 

  30. Haji-Sheikh A (2009) Determination of heat transfer in ducts with axial conduction by variational calculus. ASME J Heat Transf 131(9):091702-(1-11)

    Article  Google Scholar 

  31. Haji-Sheikh A, Minkowycz WJ, Sparrow EM (2004) Green’s function solution of temperature field for flow in porous passages. Int J Heat Mass Transf 47(22):4685–4695

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Haji-Sheikh.

Appendix: Application of orthogonality condition

Appendix: Application of orthogonality condition

The objective of this analysis is to use the orthogonality condition for determination of A m in Eq. 8 and B m for insertion in Eq. 9. Replacing the parameter −λ 2 m with β 2 m and R m (r) with Φ m (r) in Eq. 8, it becomes

$$ \theta_{1} (\bar{x},r) = \sum\limits_{m = 1}^{\infty } {A_{m} \Upphi_{m} (r)e^{{\beta_{m}^{2} \bar{x}}} } \quad {\text{when}}\;\bar{x} < 0 $$
(26)

Also, replacing the parameter R m (r) with Ψ m (r) in Eq. 9, it becomes

$$ \theta_{2} (\bar{x},r) = \sum\limits_{m = 1}^{\infty } {B_{m} \Uppsi_{m} (r)e^{{ - \lambda_{m}^{2} \bar{x}}} } \quad {\text{when}}\;\bar{x} \ge 0 $$
(27)

Then, the compatibility conditions as given by Eqs. 13a, 13b leads to the relations

$$ \sum\limits_{m = 1}^{\infty } {A_{m} \Upphi_{m} (r)} = \sum\limits_{m = 1}^{\infty } {B_{m} \Uppsi_{m} (r)} + 2F(r) $$
(28)

and

$$ \sum\limits_{m = 1}^{\infty } {A_{m} \beta_{m}^{2} \Upphi_{m} (r)} = - \sum\limits_{m = 1}^{\infty } {B_{m} \lambda_{m}^{2} \Uppsi_{m} (r)} + 2 $$
(29)

Next, one can multiply both sides of Eq. 28 by β 2 n /Pe 2 − u/U, both sides of Eq. 29 by 1/Pe 2, and add the resulting relations to get

$$ \sum\limits_{m = 1}^{\infty } {A_{m} \left( {{\frac{{\beta_{m}^{2} + \beta_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right)} \Upphi_{m} (r) = \sum\limits_{m = 1}^{\infty } {B_{m} \left( {{\frac{{ - \lambda_{m}^{2} + \beta_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right)\Uppsi_{m} (r)} + {\frac{2}{{Pe^{2} }}} + 2F(r)\left( {{\frac{{\beta_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right) $$
(30)

To apply the orthogonality condition, one can multiply both sides of Eq. 30 by Φ n (r)rdr for any given n and integrate over r to produce

$$ \begin{aligned} \sum\limits_{m = 1}^{\infty } {A_{m} } \int\limits_{0}^{1} {\left( {{\frac{{\beta_{m}^{2} + \beta_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right)} \Upphi_{m} (r)\Upphi_{n} (r)rdr & = \sum\limits_{m = 1}^{\infty } {B_{m} } \int\limits_{0}^{1} {\left( {{\frac{{ - \lambda_{m}^{2} + \beta_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right)} \\ & \times \Uppsi_{m} (r)\Upphi_{n} (r)rdr + 2\int\limits_{0}^{1} {\left[ {{\frac{1}{{Pe^{2} }}} + F(r)\left( {{\frac{{\beta_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right)} \right]} \Upphi_{n} (r)rdr \\ \end{aligned} $$
(31)

It is to be noted from the orthogonality condition in [8] that the first term on the right side of Eq. 31 would vanish since \( - \beta_{n}^{2} \ne \lambda_{m}^{2} \) as they are in different domains for the same eigenfunctions. Therefore, the non-zero terms when \( \beta_{n}^{2} = \beta_{m}^{2} \) for m = n lead to the value of

$$ A_{n} = {\frac{{2\int_{0}^{1} {\left[ {{\frac{1}{{Pe^{2} }}} + F(r)\left( {{\frac{{\beta_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right)} \right]} \Upphi_{n} (r)rdr}}{{\int_{0}^{1} {\left( {{\frac{{2\beta_{n}^{2} }}{{{\text{Pe}}^{2} }}} - \frac{u}{U}} \right)} \Upphi_{n}^{2} (r)rdr}}}\;{\text{for}}\;n = 1,2,3, \ldots $$
(32)

The aforementioned procedure can be modified for determination of coefficient B m for insertion in Eq. 9. Multiplying both sides of Eq. 28 by \( - \lambda_{n}^{2} /Pe^{2} - u/U \), both sides of Eq. 29 by 1/Pe 2, and then adding the resulting relations yields

$$ \begin{aligned} \sum\limits_{m = 1}^{\infty } {A_{m} \left( {{\frac{{\beta_{m}^{2} - \lambda_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right)\Upphi_{m} (r)} & = \sum\limits_{m = 1}^{\infty } {B_{m} \left( {{\frac{{ - \lambda_{m}^{2} - \lambda_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right)\Uppsi_{m} (r)} \\ & + {\frac{2}{{{\text{Pe}}^{2} }}} + 2F(r)\left( {{\frac{{ - \lambda_{n}^{2} }}{{{\text{Pe}}^{2} }}} - \frac{u}{U}} \right) \\ \end{aligned} $$
(33)

Finally, multiplying both sides of Eq. 33 by Ψ n (r)rdr for a given n and integrating over r produces

$$ \begin{aligned} \sum\limits_{m = 1}^{\infty } {A_{m} } \int\limits_{0}^{1} {\left( {{\frac{{\beta_{m}^{2} - \lambda_{n}^{2} }}{{Pe^{2} }}} - \frac{u}{U}} \right)} \Upphi_{m} (r)\Uppsi_{n} (r)rdr & = - \sum\limits_{m = 1}^{\infty } {B_{m} } \int\limits_{0}^{1} {\left( {{\frac{{\lambda_{m}^{2} + \lambda_{n}^{2} }}{{Pe^{2} }}} + \frac{u}{U}} \right)} \\ & \times \Uppsi_{m} (r)\Uppsi_{n} (r)rdr + 2\int\limits_{0}^{1} {\left[ {{\frac{1}{{Pe^{2} }}} - F(r)\left( {{\frac{{\lambda_{n}^{2} }}{{Pe^{2} }}} + \frac{u}{U}} \right)} \right]} \Uppsi_{n} (r)rdr \\ \end{aligned} $$
(34)

In this case, the left side of Eq. 34 vanishes due to the orthogonality condition [8] since \( - \beta_{n}^{2} \ne \lambda_{m}^{2} \); therefore, the non-zero terms when \( \lambda_{n}^{2} = \lambda_{m}^{2} \) for m = n lead to the value of

$$ B_{n} = {\frac{{\int\limits_{0}^{1} {\left[ {{\frac{1}{{Pe^{2} }}} - F(r)\left( {{\frac{{\lambda_{n}^{2} }}{{Pe^{2} }}} + \frac{u}{U}} \right)} \right]} \Uppsi_{n} (r)rdr}}{{\int\limits_{0}^{1} {\left( {{\frac{{2\lambda_{n}^{2} }}{{Pe^{2} }}} + \frac{u}{U}} \right)} \Uppsi_{n}^{2} (r)rdr}}}\;{\text{for}}\;n = 1,2,3, \ldots $$
(35)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haji-Sheikh, A., Minkowycz, W.J. & Manafzadeh, S. Axial conduction effect in flow through circular porous passages with prescribed wall heat flux. Heat Mass Transfer 46, 727–738 (2010). https://doi.org/10.1007/s00231-010-0617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-010-0617-3

Keywords

Navigation