Skip to main content
Log in

The relationship between absolute vorticity flux along the main flow and convection heat transfer in a tube inserting a twisted tape

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

As passive enhancement devices, twisted tape insert has been used for almost a century, the most dominant heat transfer enhancement mechanism of circular tube fitted with twisted tape is the secondary flow generated by the tape. There is a parameter to specify the intensity of secondary flow, but this parameter cannot be applied to more general cases. Here cross-averaged absolute vorticity flux in the main flow direction is used to specify the intensity of secondary flow produced by twisted tape inserted in a tube. The relationship between the intensity of secondary flow and the intensity of laminar convective heat transfer is studied using a numerical method. The results reveal that the cross-averaged absolute vorticity flux in the main flow direction can reflect the intensity of secondary flow and a significant relationship between this cross-averaged absolute vorticity flux and Nusselt number exists for studied cases. The presented results validate that the cross-averaged absolute vorticity flux in the main flow direction is a general specifying of the intensity of secondary flow and can be used in other cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Area of cross section (m2)

c p :

Specific heat capacity [kJ/(kg K)]

D :

Tube internal diameter, hydraulic diameter (m)

f :

Friction factor: f = ΔpD/(2ρu 2 m L)

g :

Acceleration due to gravity (m/s2)

Gr :

Grashof number: Gr =  2 D 3 β(T w  T bulk)/μ 2

h :

Heat transfer coefficient [W/(m2 K)]

H :

Twist pitch length (m)

J n :

Vorticity flux along the normal direction of cross section (s−1)

J nABS :

Absolute vorticity flux along the normal direction of cross section (s−1)

L :

Axial length (m)

n :

Normal direction of the cross section or wall surface

Nu :

Nusselt number: Nu = hD/λ

p :

Static pressure (Pa)

Pr :

Prandtl number: Pr = µc p/λ

q :

Heat flux (W/m2)

Re :

Reynolds number: Re = ρu m D/μ

s :

Local coordinates (m)

Sw :

Dimensionless swirl parameter defined in Eq. 1

T :

Temperature (K)

T r :

Twist ratio of the twisted tape: T r = H/D

u i , u, v, w :

Components of velocity vector (m/s)

u :

Velocity (m/s)

x i , x, y, z :

Coordinates axes (m)

α 1, α 2, β 1, β 2 :

Interpolation coefficients used in Eqs. 15 and 16

β :

Coefficient of isobaric thermal expansion (K−1)

δ :

Tape thickness (m)

ε :

Relative error defined in Eq. 41

η :

Coordinate (m)

λ :

Thermal conductivity [W/(m K)]

µ :

Viscosity (Pa s)

ρ :

Density (kg/m3)

Θ:

Dimensionless temperature

Δp :

Pressure drop (Pa)

ω :

Vorticity (s−1)

ξ, ζ :

Coordinates axes (m)

bulk:

Cross averaged value

f:

Fluid

in:

Inlet

local:

Local value

m :

Averaged value

out:

Outlet

s:

Solid

w:

Wall surface

References

  1. Bergles AE (1969) Survey and evaluation of techniques to augment convective heat and mass transfer. Prog Heat Mass Transf 1:331–424

    Google Scholar 

  2. Bergles AE (1973) Recent developments in convective heat transfer augmentation. Appl Mech Rev 26:675–682

    Google Scholar 

  3. Bergles AE (1981a) Principles of heat transfer augmentation. I. Single phase heat transfer. In: Kakac S, Bergles AE, Mayinger F (eds) Heat exchangers: thermal-hydraulic fundamentals and design. Hemisphere, Washington, pp 819–842

    Google Scholar 

  4. Bergles AE (1981b) Applications of heat transfer augmentation. In: Kakac S, Bergles AE, Mayinger F (eds) Heat exchangers: thermal-hydraulic fundamentals and design. Hemisphere, Washington, pp 883–911

    Google Scholar 

  5. Bergles AE (1985) Techniques to augment heat transfer. In: Rohsenow WM et al (eds) Handbook of heat transfer applications, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  6. Bergles AE, Joshi SD (1983) Augmentation techniques for low Reynolds number in-tube flow. In: Kakac S, Shah RK, Bergles AE (eds) Low Reynolds number flow heat exchangers. Hemisphere, Washington, pp 695–720

    Google Scholar 

  7. Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes. Part I. Laminar flows. J Heat Transf ASME Trans 115:881–889

    Article  Google Scholar 

  8. Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes. Part II. Transition and turbulent flows. J Heat Transf ASME Trans 115:890–896

    Article  Google Scholar 

  9. GCJr Kidd (1969) Heat transfer and pressure drop for nitrogen flowing in tubes containing twisted tapes. J AIChE 15:581–585

    Article  Google Scholar 

  10. Klepper OH (1972) Heat transfer performance of short twisted tapes. J AIChE 35:1–24

    Google Scholar 

  11. Saha SK, Gaitonde UN, Date AW (1989) Heat transfer and pressure drop characteristics of laminar flow in a circular tube fitted with regularly spaced twisted-tape elements. Exp Therm Fluid Sci 2:310–322

    Article  Google Scholar 

  12. Date AW, Gaitonde UN (1990) Development of correlations for predicting characteristics of laminar flow in a tube fitted with regularly spaced twisted-tape elements. Exp Therm Fluid Sci 3:373–382

    Article  Google Scholar 

  13. Patil AG (2000) Laminar flow heat transfer and pressure drop characteristics of power-law fluids inside tubes with varying width twisted tape inserts. J Heat Transf ASME Trans 122:143–149

    Article  MathSciNet  Google Scholar 

  14. Manglik RM, Bergles AE (2003) Swirl flow heat transfer and pressure drop with twisted-tape inserts. Adv Heat Transf 36:183–266

    Google Scholar 

  15. Sarma PK, Kishore PS, Dharma Rao V, Subrahmanyam T (2005) A combined approach to predict friction coefficients and convective heat transfer characteristics in a tube with twisted tape inserts for a wide range of Re and Pr. Int J Therm Sci 44(4):393–398

    Article  Google Scholar 

  16. Naphon P (2006) Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert. Int Comm Heat Mass Transf 33(2):166–175

    Article  Google Scholar 

  17. Akhavan-Behabadi MA, Kumar R, Jamali M (2009) Investigation on heat transfer and pressure drop during swirl flow boiling of R-134a in a horizontal tube. Int J Heat Mass Transf 52(7–8):1918–1927

    Article  Google Scholar 

  18. Akhavan-Behabadi MA, Kumar R, Mohammadpour A, Jamali M (2009) Effect of twisted tape insert on heat transfer and pressure drop in horizontal evaporators for the flow of R-134a. Int J Refrigeration 32(5):922–930

    Article  Google Scholar 

  19. Soonga CY, Yan WM (1999) Development of secondary flow and convective heat transfer in isothermal/iso-flux rectangular ducts rotating about a parallel axis. Int J Heat Mass Transf 42:497–510

    Article  Google Scholar 

  20. Gau C, Liu CW et al (1999) Secondary flow and enhancement of heat transfer in horizontal parallel-plate and convergent channels heating from below. Int J Heat Mass Transf 42:2629–2647

    Article  Google Scholar 

  21. Liu CW, Gau C (2004) Onset of secondary flow and enhancement of heat transfer in horizontal convergent and divergent channels heated from below. Int J Heat Mass Transf 47(25):5427–5438

    Article  Google Scholar 

  22. Kiml R, Magda A, Mochizuki S et al (2004) Rib-induced secondary flow effects on local circumferential heat transfer distribution inside a circular rib-roughened tube. Int J Heat Mass Transf 47(6–7):1403–1412

    Article  Google Scholar 

  23. Tilak T (2003) Numerical prediction of secondary flow and convective heat transfer in externally heated curved rectangular ducts. Int J Therm Sci 42(2):187–198

    Article  MathSciNet  Google Scholar 

  24. Rindt CCM, Sillekens JJM, Steenhoven AAV (1999) The influence of the wall temperature on the development of heat transfer and secondary flow in a coiled heat exchanger. Int Comm Heat Mass Transf 26(2):187–198

    Article  Google Scholar 

  25. Zhu CL, Hua L, Sun DL, Wang LB, Zhang YH (2006) Numerical study of interactions of vortices generated by vortex generators and their effects on heat transfer enhancement. Numer Heat Transf A 50:353–368

    Article  Google Scholar 

  26. Eriksson LE (1985) Practical three-dimension mesh generation using transfinite interpolation. SIAM J Sci Stat Comp 6(3):712–741

    Article  MATH  MathSciNet  Google Scholar 

  27. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, New York, pp 330–351

    MATH  Google Scholar 

  28. Li ZY, Tao WQ (2002) A new stability-guaranteed second-order difference scheme. Numer Heat Transf B 42:349–365

    Article  Google Scholar 

  29. Tao WQ (2001) Numerical heat transfer, 2nd edn. Xi’an Jiaotong University Press, Xi’an, pp 485–488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Bi Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, ZM., Sun, DL. & Wang, LB. The relationship between absolute vorticity flux along the main flow and convection heat transfer in a tube inserting a twisted tape. Heat Mass Transfer 45, 1351–1363 (2009). https://doi.org/10.1007/s00231-009-0511-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-009-0511-z

Keywords

Navigation