Skip to main content
Log in

Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In the present paper, conjugate heat transfer approach has been used to numerically study laminar forced convective heat transfer characteristics of Al2O3/H2O nanofluid flowing in a silicon microchannel heat sink (MCHS) of rectangular cross-section using thermal dispersion model. Results are presented in terms of thermal resistance that characterizes MCHS performance. It is observed that use of nanofluid improves MCHS performance by reducing fin (conductive) thermal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

C*:

Constant, in Eq. 7

C p :

Specific heat (J/kg K)

d h :

Hydraulic diameter (μm) (10−6 m)

D :

Thermal dispersion coefficient (W/mK)

f :

Skin friction coefficient

h :

Heat transfer coefficient (HTC) (W/m2K)

k :

Thermal conductivity (W/mK)

L :

Length of MCHS (mm) (10−3 m)

L e :

Entrance length (mm)

p :

Pressure (Pa)

Δp :

Pressure drop (kPa) (103 N/m2)

P :

Perimeter of microchannel (μm)

Pe :

Peclet number, Pe = d h v avg/(k/ρC p)nf

Pow:

Pumping power (W)

q″:

Heat flux (MW/m2)

Q :

Dissipated power (W)

Re :

Reynolds number, Re = d h v avg/(μ/ρ)nf

t b :

Substrate thickness on heated side of MCHS (μm)

T :

Temperature (K)

T s :

Substrate (wafer) temperature (K)

v :

Velocity (m/s)

V :

Volumetric flowrate (cc/s) (10−6 m3/s)

w ch :

Width of microchannel (μm)

w fin :

Width of microchannel wall (fin) (μm)

W :

Width of MCHS (mm)

3D:

Three-dimensional

α :

Surface area multiplication factor

β :

Ratio of nanolayer thickness to nanoparticle radius, in Eq. 5

ϕ :

Volume fraction of nanoparticles

μ :

Viscosity (kg/ms)

ρ :

Density (kg/m3)

Ω:

Computational domain

θ :

Thermal resistance (K/W)

θ cond :

Thermal resistance due to substrate thickness on heated side of MCHS (K/W)

ψ :

Synergy angle (degree)

avg:

Average

axial:

Axial

bf:

Base fluid

exit:

Exit (outlet)

flow:

Flow (convective)

fin:

Fin/wall (conductive)

in:

Inlet

max:

Maximum

net:

Overall

nf:

Nanofluid

np:

Nanoparticle

s:

Substrate (solid silicon wafer)

wall:

Wall

References

  1. Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Dev Lett EDL-2 5:126–129

    Article  Google Scholar 

  2. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720

    Article  Google Scholar 

  3. Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863

    Article  MATH  Google Scholar 

  4. Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64

    Article  Google Scholar 

  5. Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  MATH  Google Scholar 

  6. Fedorov AG, Viskanta R (2000) Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging. Int J Heat Mass Transf 43:399–415

    Article  MATH  Google Scholar 

  7. Li J, Peterson GP, Cheng P (2004) Three-dimensional analysis of heat transfer in a micro-heat sink with single phase flow. Int J Heat Mass Transf 47:4215–4231

    Article  MATH  Google Scholar 

  8. Qu W, Mudawar I (2002) Analysis of three-dimensional heat transfer in micro-channel heat sinks. Int J Heat Mass Transf 45:3973–3985

    Article  MATH  Google Scholar 

  9. Koo J, Kleinstreuer C (2005) Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf 48:2652–2661

    Article  Google Scholar 

  10. Jang SP, Choi SUS (2006) Cooling performance of a microchannel heat sink with nanofluids. Appl Thermal Eng 26:2457–2463

    Article  Google Scholar 

  11. Palm SJ, Roy G, Nguyen CT (2006) Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature-dependent properties. Appl Thermal Eng 26:2209–2218

    Article  Google Scholar 

  12. Chein R, Huang G (2005) Analysis of microchannel heat sink performance using nanofluids. Appl Thermal Eng 25:3104–3114

    Article  Google Scholar 

  13. Tsai TH, Chein R (2007) Performance analysis of nanofluid-cooled microchannel heat sinks. Int J Heat Fluid Flow 28:1013–1026

    Article  Google Scholar 

  14. Guo ZY, Li DY, Wang BX (1998) A novel concept for convective heat transfer enhancement. Int J Heat Mass Transf 41:2221–2225

    Article  MATH  Google Scholar 

  15. Tao WQ, Guo ZY, Wang BX (2002) Field synergy principle for enhancing convective heat transfer–its extension and numerical verifications. Int J Heat Mass Transf 45:3849–3856

    Article  MATH  Google Scholar 

  16. Tao WQ, He YL, Wang QW, Qu ZG, Song FQ (2002) A unified analysis on enhancing single phase convective heat transfer with field synergy principle. Int J Heat Mass Transf 45:4871–4879

    Article  MATH  Google Scholar 

  17. Guo ZY, Tao WQ, Shah RK (2005) The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. Int J Heat Mass Transf 48:1797–1807

    Article  Google Scholar 

  18. Heris SZ, Etemad SGH, Esfahany MN (2006) Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Comm Heat Mass Transf 33:529–535

    Article  Google Scholar 

  19. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanoparticle Res 5:167–171

    Article  Google Scholar 

  20. Xue L, Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2004) Effect of liquid layering at the liquid–solid interface on thermal transport. Int J Heat Mass Transf 47:4277–4284

    Article  MATH  Google Scholar 

  21. Ozisik MN (1985) Heat transfer a basic approach, Int ed. McGraw-Hill, Singapore

    Google Scholar 

  22. Heris SZ, Esfahany MN, Etemad SGH (2007) Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow 28:203–210

    Article  Google Scholar 

  23. Abbassi H, Aghanajafi C (2006) Evaluation of heat transfer augmentation in a nanofluid-cooled microchannel heat sink. J Fusion Energy 25(3/4):187–196

    Article  Google Scholar 

  24. Zhuo L, Quan TW, Ling HY (2006) A numerical study of laminar convective heat transfer in microchannel with non-circular cross-section. Int J Thermal Sci 45:1140–1148

    Article  Google Scholar 

  25. FLUENT, User’s Guide, Release 6.2.16 Fluent Inc., Lebanon, New Hampshire

  26. Incropera FP, Dewitt DP (1996) Fundamentals of heat and mass transfer, 4th edn. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, P., Samanta, A.N. & Chakraborty, S. Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid. Heat Mass Transfer 45, 1323–1333 (2009). https://doi.org/10.1007/s00231-009-0510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-009-0510-0

Keywords

Navigation