Skip to main content
Log in

Heat conduction and heat wave propagation in functionally graded thick hollow cylinder base on coupled thermoelasticity without energy dissipation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

In this paper, heat wave propagation and coupled thermoelasticity without energy dissipation in functionally graded thick hollow cylinder is presented based on Green–Naghdi theory. The material properties are supposed to vary as a power function of radius across the thickness of cylinder. The cylinder is considered in axisymmetry and plane strain conditions and it is divided to many sub-cylinders (layers) across the thickness. Each sub-cylinder is considered to be made of isotropic material and functionally graded property can be created by suitable arrangement of layers. The Galerkin finite element method and Newmark finite difference method are employed to solve the problem. The time history of second sounds and displacement wave propagation are obtained for various values of power function. Computed results agree well with the published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fukui Y, Yamanaka N (1992) Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure. JSME Int J Ser I 35(4)

  2. Zimmerman RW, Lutz MP (1999) Thermal stress and thermal expansion in a uniformly heated functionally graded cylinder. J Therm Stress 22:88–177

    Google Scholar 

  3. Praveen GN, Reddy JN (1998) Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates. Int J Solids Struct 35:4457–4476

    Article  MATH  Google Scholar 

  4. Hosseini SM, Akhlaghi M, Shakeri M (2007) Transien heat conduction in functionally graded thick hollow cylinder (by analytical method). Heat Mass Transf 43:669–675

    Article  Google Scholar 

  5. Han x, Liu GR (2002) Effects of SH waves in a functionally graded plate. Mech Res Commun 29:327–338

    Article  MATH  Google Scholar 

  6. Chakraborty A, Gopalakrishnan S (2003) A spectrally formulated finite element for wave propagation analysis in functionally graded beams. Int J Solids Struct 40:2421–2448

    Article  MATH  Google Scholar 

  7. Berezovski A, Engelbrecht J, Maugin GA (2003) Numerical simulation of two-dimensional wave propagation in functionally graded materials. Eur J Mech A/Solids 22:257–265

    Article  MATH  MathSciNet  Google Scholar 

  8. Han X, Liu GR, Lam KY (2001) Transient waves in plates of functionally graded material. Int J Numer Methods Eng 52:851–865

    Article  MATH  Google Scholar 

  9. Han X, Liu GR, Xi ZC, Lam KY (2001) Transient waves in a functionally graded cylinder. Int J Solids Struct 38:3021–3037

    Article  MATH  Google Scholar 

  10. Han X, Liu GR, Xi ZC, Lam KY (2002) Characteristics of waves in a functionally graded cylinder. Int J Numer Methods Eng 53(3):653–676

    Article  MATH  Google Scholar 

  11. Han X, Liu GR (2003) Elastic waves propagation in a functionally graded piezoelectric cylinder. Smart Mater Struct 12(6):962–971

    Article  Google Scholar 

  12. Vollmann J, Profunser DM, Bryner J, Dual J (2006) Elastodynamic wave propagation in graded materials: simulations, experiments, phenomena, and applications. Ultrasonics 44:e1215–e1221

    Article  Google Scholar 

  13. Shakeri M, Akhlaghi M, Hosseini SM (2006) Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder. Compos Struct 76:174–181

    Article  Google Scholar 

  14. Zhang GM, Batra Rc (2007) Wave propagation in functionally graded materials by modified smoothed particle hydrodynamics (MSPH) method. J Comput Phys 222:374–390

    Article  MATH  MathSciNet  Google Scholar 

  15. Du J, Jin X, Wang J, Xian K (2007) Love wave propagation in functionally garded piezoelectric material layer. Ultrasonics 46:13–22

    Article  Google Scholar 

  16. Bahtui A, Eslami MR (2007) Coupled thermoelasticity of functionally graded cylindrical shells. Mech Res Commun 34:1–18

    Article  Google Scholar 

  17. Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–208

    Article  MATH  MathSciNet  Google Scholar 

  18. Taheri H, Fariborz S, Eslami MR (2005) Thermoelastic analysis of an annulus using the Green–Naghdi Model. J Therm Stress 28(9):911–927

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akhlaghi.

Appendix

Appendix

The components of mass matrices for each element

$$ {\begin{array}{*{20}l} {M_{11} =-\alpha_5} & {M_{12} =0} & {M_{13} =-\alpha_6} & {M_{14} =0} \\ \end{array}} $$
$$ {\begin{array}{*{20}l} {M_{21} =\frac{\varepsilon^\ast \alpha_{13}}{R}-\frac{\varepsilon^\ast R}{3}} & {M_{22} =-\frac{c}{c_1}\alpha_5} & {M_{23} =-\frac{\varepsilon^\ast \alpha_{13}}{R}-\varepsilon^\ast \alpha_8} & {M_{24} =-\frac{c}{c_1}\alpha_6} \\ \end{array}} $$
$$ {\begin{array}{*{20}l} {M_{31} =-\alpha_6} & {M_{32} =0} & {M_{33} =-\alpha_{11} } & {M_{34} =0} \\ \end{array}} $$
$$ {\begin{array}{*{20}l} {M_{41} =\frac{\varepsilon^\ast \alpha_{14}}{R}-\varepsilon^\ast \alpha _8} & {M_{42} =-\frac{c}{c_1}\alpha_6} & {M_{43} =-\frac{\varepsilon^\ast \alpha_{14}}{R}-\frac{\varepsilon^\ast R}{3}} & {M_{44} =-\frac{c}{c_1}\alpha_{11}} \\ \end{array}} $$

where R = r i+1r i . For simplicity, we assumed that \(\bar{r}=r\) in the “Appendix”.

The components of stiffness matrices for each element

$$\begin{array}{ll} {K_{11} =-\frac{C_p^2r_i}{R}-\frac{C_p^2}{2}-\left({C_p^2-C_s^2} \right)\alpha_1} & {K_{12} =\frac{C_p^2\alpha _{13}}{R}} \\ {K_{13} =\frac{C_p^2r_i}{R}+\frac{C_p^2}{2}-\left({C_p^2-C_s^2} \right)\alpha_2} & {K_{14} =-\frac{C_p^2\alpha_{13}}{R}} \end{array}$$
$$\begin{array}{ll} {K_{21} =0} &{K_{22} =-\frac{C_T^2r_i }{R}-\frac{C_T^2}{2}} \\ {K_{23} =0} & {K_{24} = \frac{C_T^2r_i}{R}+\frac{C_T^2}{2}} \end{array}$$
$$\begin{array}{ll} {K_{31} =\frac{C_p^2r_{i+1}}{R}-\frac{C_p^2}{2}-\left({C_p^2-C_s^2} \right)\alpha_2} & {K_{32} =\frac{C_p^2\alpha _{14}}{R}} \\ {K_{33} =-\frac{C_p^2r_{i+1}}{R}+\frac{C_p^2}{2}-\left({C_p^2-C_s^2} \right)\alpha_9} & {K_{34} =-\frac{C_p^2\alpha_{14}}{R}} \end{array}$$
$$\begin{array}{ll} {K_{41} =0} & {K_{42} =\frac{C_T^2r_{i+1} }{R}-\frac{C_T^2}{2}} \\ {K_{43} =0} & {K_{44} =-\frac{C_T^2r_{i+1}}{R}+\frac{C_T^2}{2}} \end{array}$$

where

$$ \begin{aligned} \alpha_1&\,=\,\int\limits_{r_i}^{r_{i+1}} {\frac{N_1^2}{r}dr\,=\,} \frac{1}{R^2}\left\{ {r_{i+1}^2\ln \frac{r_{i+1}}{r_i}-2r_{i+1} R+\frac{R}{2}\left({r_{i+1} +r_i} \right)} \right\}\\ \alpha_2 &\,=\,\int\limits_{r_i}^{r_{i+1}} {\frac{N_1 N_2}{r}dr\,=\,} \frac{1}{R^2}\left\{{-r_{i+1} r_i \ln \frac{r_{i+1}}{r_i }+\frac{R}{2}\left({r_{i+1} +r_i} \right)} \right\}\\ \alpha_3&\,=\,\int\limits_{r_i}^{r_{i+1}} {\frac{N_1^2}{r^2}dr\,=\,} \frac{1}{R^2}\left\{{-2r_{i+1} \ln \frac{r_{i+1}}{r_i}+R+R\frac{r_{i+1} }{r_i}} \right\}\\ \alpha_4 &\,=\,\int\limits_{r_i}^{r_{i+1}} {\frac{N_1 N_2}{r^2}dr\,=\,} \frac{1}{R^2}\left\{{\left({r_{i+1} +r_i} \right)\ln \frac{r_{i+1}}{r_i }-2R} \right\}\\ \alpha_5 &\,=\,\int\limits_{r_i}^{r_{i+1}} {N_1^2rdr\,=\,} \frac{1}{R^2}\left\{ {\frac{r_{i+1}^2R}{2}\left({r_{i+1} +r_i} \right)-\frac{2r_{i+1} }{3}\left({r_{i+1}^3-r_i^3} \right)+\frac{1}{4}\left({r_{i+1}^4-r_i^4} \right)} \right\}\\ \alpha_6 &\,=\,\int\limits_{r_i}^{r_{i+1}} {N_1 N_2 rdr\,=\,} \frac{1}{R^2}\left\{ {-\frac{r_{i+1} r_i R}{2}\left({r_{i+1} +r_i} \right)+\frac{\left( {r_{i+1} +r_i} \right)}{3}\left({r_{i+1}^3-r_i^3} \right)-\frac{1}{4}\left({r_{i+1}^4-r_i^4} \right)} \right\}\\ \alpha_7 &\,=\,\int\limits_{r_i}^{r_{i+1}} {N_1^2dr\,=\,} \frac{R}{3}\\ \alpha_8 &\,=\,\int\limits_{r_i}^{r_{i+1}} {N_1 N_2 dr\,=\,} \frac{1}{R^2}\left\{ {\frac{R}{2}\left({r_{i+1} +r_i} \right)^2-\frac{1}{3}\left({r_{i+1} ^3-r_i^3} \right)-r_i r_{i+1} R} \right\}\\ \alpha_9 &\,=\,\int\limits_{r_i}^{r_{i+1}} {\frac{N_2^2}{r}dr\,=\,} \frac{1}{R^2}\left\{ {r_i^2\ln \frac{r_{i+1}}{r_i}-2r_i R+\frac{R}{2}\left({r_{i+1} +r_i} \right)} \right\}\\ \alpha_{10} &\,=\,\int\limits_{r_i}^{r_{i+1}} {\frac{N_2^2}{r^2}dr\,=\,} \frac{1}{R^2}\left\{{R-2r_i \ln \frac{r_{i+1}}{r_i}+R\frac{r_i}{r_{i+1} }} \right\}\\ \alpha_{11} &\,=\,\int\limits_{r_i}^{r_{i+1}} {N_2^2rdr\,=\,\frac{1}{R^2}} \left\{{\frac{r_i^2R}{2}\left({r_{i+1} +r_i} \right)-\frac{2r_i }{3}\left({r_{i+1}^3-r_i^3} \right)+\frac{1}{4}\left({r_{i+1}^4-r_i^4} \right)} \right\}\\ \alpha_{12} &\,=\,\int\limits_{r_i}^{r_{i+1}} {N_2^2dr\,=\,} \frac{R}{3}\\ \alpha_{13} &\,=\,\int\limits_{r_i}^{r_{i+1}} {N_1 rdr\,=\,} \frac{1}{R}\left\{ {\frac{R}{2}r_{i+1} \left({r_i +r_{i+1}} \right)-\frac{1}{3}\left( {r_{i+1}^3-r_i^3} \right)} \right\}\\ \alpha_{14} &\,=\,\int_{r_i}^{r_{i+1}} {N_1 rdr\,=\,} \frac{1}{R}\left\{ {-\frac{R}{2}r_i \left({r_i +r_{i+1}} \right)+\frac{1}{3}\left({r_{i+1} ^3-r_i^3} \right)} \right\}\\ \end{aligned} $$

Force matrices for each element

$$ {\begin{array}{*{20}l} {f_{11} =\left. {-C_p^2\frac{\partial \bar{u}}{\partial \bar{r}}} \right|_{r=r_i} .r_i} & & & {f_{21} =\left. {-C_T ^2\frac{\partial \bar{u}}{\partial \bar{r}}} \right|_{r=r_i} .r_i} \\ \end{array}} $$
$$ {\begin{array}{*{20}l} {f_{31} =\left. {C_p^2\frac{\partial \bar{u}}{\partial \bar{r}}} \right|_{r=r_{i+1}} .r_{i+1}} & & & {f_{41} =\left. {C_T^2\frac{\partial \bar{u}}{\partial \bar{r}}} \right|_{r=r_{i+1}} .r_{i+1}} \\ \end{array}} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosseini, S.M., Akhlaghi, M. & Shakeri, M. Heat conduction and heat wave propagation in functionally graded thick hollow cylinder base on coupled thermoelasticity without energy dissipation. Heat Mass Transfer 44, 1477–1484 (2008). https://doi.org/10.1007/s00231-008-0381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-008-0381-9

Keywords

Navigation