Skip to main content
Log in

Heat transfer study in rotating cascade using IR thermography and CFD analyses

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This paper presents an experimental and CFD numerical study of convective heat transfer in a rotating cascade. Infrared thermography was used to measure surface temperature distribution on a rotating hollow blade, heated internally by secondary air. A CFD numerical model was made according to the actual test rig geometry and operating conditions. Tests were carried out in an iposonic flow regime at relatively low fluid temperatures, with the rotational and Reynolds numbers varied and hot-to-cool air mass flow ratio kept constant. Experimental and numerical results for the blade pressure side are compared in terms of surface temperature 2D distribution and Nusselt number one-dimensional distribution along the blade midspan, providing a reasonable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

C :

Constant

c p :

Specific heat capacity, J kg−1 K−1

D :

Diameter, m

h :

Enthalpy, J kg−1

I :

Rothalpy, J kg−1

k :

Turbulent kinetic energy, m2 s−2

L :

Characteristic length, chord length, m

Ma :

Mach number, Ma = w /c

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{m} \) :

Mass flow rate, kg s−1

n :

Rotational speed, min−1

Nu :

Nusselt number, Nu = α L

p :

Pressure, kg m−1 s−2

P* :

Modified pressure, P* = p+2ρk/3, kg m−1 s−2

P k :

Turbulence production term

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{q} \) :

Heat flux, W m−2

Pr :

Prandtl number, Pr = μc p /λ

Pr t :

Turbulent Prandtl number, Pr t  = ν t H

r :

Radius, m

Re :

Reynolds number, Re = w L/v

Ro :

Rotational number, Ro = ω L/w

S :

Source term

t :

Time, s

T :

Temperature, °C

U :

Mean velocity, m s−1

u* :

Velocity scale, \( u^* = C^{{1/4}}_{\mu } k^{{1/2}} \)

w :

Axial speed of gases, m s−1

W :

Relative velocity, m s−1

x :

Coordinate, m

y 2-1 :

Distance between the first and second grid points off the wall

y* :

Nondimensional distance from the wall, y* = u*y 2−1/(4ν)

α :

Heat transfer coefficient, W m−2 K−1

ε :

Dissipation rate of turbulent kinetic energy, m2 s−3

ε H :

Eddy thermal diffusivity, m2 s−1

χ :

Air mass flow ratio

λ :

Thermal conductivity, W m−1 K−1

μ :

Dynamic viscosity, kg m−1 s−1

μ t :

Eddy viscosity, kg m−1 s−1

ν :

Kinematic viscosity, m2 s−1

ν t :

Eddy kinematic viscosity, m2 s−1

ρ :

Density, kg m−3

σ :

Constant

ω :

Angular speed of the rotor, s−1

ω :

Turbulent eddy frequency, s−1

f :

Fluid

m :

Main

s :

Secondary, surface

tot :

Total

o :

Orifice

w :

Wall

:

Conditions in free stream

References

  1. Astrita T, Cardone G, Carlomagno GM, Meola C (2000) A survey on infrared thermography for convective heat transfer measurements. Opt Laser Technol 32:593–610

    Article  Google Scholar 

  2. Astrita T, Cardone G, Carlomagno GM (2006) Infrared thermography: an optical method in heat transfer and fluid flow visualisation. Opt Laser Eng 44:261–281

    Article  Google Scholar 

  3. Blair MF (1994) An experimental study of heat transfer in a large scale turbine rotor passage. ASME J Turbomach 116:1–13

    Article  Google Scholar 

  4. Boyle RJ, Spuckler CM, Lucci BL, Camperchioli WP (2000) Infrared low temperature turbine vane rough surface heat transfer measurements. J Turbomach 123:168–177

    Article  Google Scholar 

  5. Boutarfa R, Harmand S (2003) Local convective heat exchanges and flow structure in a rotor–stator system. Int J Therm Sci 42:1129–1143

    Article  Google Scholar 

  6. Cardone G, Astarita T, Carlomagno GM (1996) Infrared heat transfer on the rotating disk. Opt Diagn Eng 1:1–7

    Google Scholar 

  7. Cardone G, Astarita T, Carlomagno GM, (1996) Wall heat transfer in static and rotating 180° turn channels by quantitative infrared thermography. Rev Gen Therm 37:644–652

    Google Scholar 

  8. CFX-5 Documentation (2001) Mathematical models and solution algorithms

  9. Dunn MG, (1986) Heat flux measurements for a rotor of a full stage turbine part I: time averaged results. ASME J Turbomach 108:90–97

    Article  Google Scholar 

  10. Dunn MG, George WK, Rae WJ, Woodward SH, Moller JC, Seymour JP, (1986) Heat flux measurements for a rotor of a full stage turbine part II: description of analysis technique and typical time resolved results. ASME J Turbomach 108:98–107

    Google Scholar 

  11. Drobnic B, Oman J, Tuma M (2006) A numerical model for the analyses of heat transfer and leakages in a rotary air preheater. Int J Heat Mass Transf 49:5001–5009

    Article  MATH  Google Scholar 

  12. Dunn MG, Kim J, Civinskas KC, Boyle RJ (1994) Time averaged heat transfer and pressure measurements and comparison with predication for a two-stage turbine. ASME J Turmomach 116:14–22

    Google Scholar 

  13. Ekkad SV, Ou S, Rivir RB (2004) A transient infrared thermography method for simultaneous film cooling effectiveness and heat transfer coefficient measurements from a single test. J Turbomach 126:597–603

    Article  Google Scholar 

  14. Esch T (2003) Heat transfer predictions using advanced two-equation turbulence models. The 6th ASME-JSME thermal engineering joint conference

  15. Gaeg VK, Abhari RS (1997) Comparison of predicted and experimental nusselt number for a film cooled rotating blade. Int J Heat Fluid Flow 18:452–460

    Article  Google Scholar 

  16. Han J-C, Dutta S, Ekkad SV (2000) Gas turbine heat transfer and cooling technology. Taylor & Francis, London

  17. Kader BA (1981) Temperature and concentration profiles in fully turbulent boundary layers. Int J Heat Mass Transf 24:1541–1544

    Article  Google Scholar 

  18. Lakshminarayana B (1996) Fluid dynamics and heat transfer of turbomachinery. Wiley, New York

  19. Lacovides H, Launder BE (1995) Computational fluid dynamics applied to internal gas-turbine cooling:a review. Int J Heat Fluid Flow 16:454–470

    Article  Google Scholar 

  20. Montgomery DC, Runger GC (1994) Applied statistics and probability for engineers. Wiley, New York

  21. Mayer F, Feldmann O (2001) Optical measurements (techniques and applications), 2nd edn Springer, Heidelberg

    Google Scholar 

  22. Mori M, Novak L, Sekavčnik M (2003) Convective heat transfer inside rotational cascades with flat blades. J Mech Eng 49:445–457

    Google Scholar 

  23. Schulz A (2000) Infrared thermography as applied to film cooling of gas turbine. Meas Sci Technol 11:948–956

    Article  Google Scholar 

  24. Thomann H, Frisk B (1968) Measurements of heat transfer with an infrared camera. Int J Heat Mass Transf 11:819–826

    Article  Google Scholar 

  25. Vieser W, Esch T, Menter F (2002) Heat transfer predictions using advanced two-equation turbulence models. CFX Validation Report. CFX-VAL 10/1002

  26. Yuan ZX, Saniei N, Yan XT (2003) Turbulent heat transfer on the stationary disk in a rotor–stator system. Int J Heat Mass Transf 46:2207–2218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihael Sekavčnik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, L., Mori, M. & Sekavčnik, M. Heat transfer study in rotating cascade using IR thermography and CFD analyses. Heat Mass Transfer 44, 559–567 (2008). https://doi.org/10.1007/s00231-007-0269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-007-0269-0

Keywords

Navigation