Skip to main content
Log in

Mass and heat transfer during solid sphere dissolution in a non-uniform fluid flow

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

We studied a nonisothermal dissolution of a solvable solid spherical particle in an axisymmetric non-uniform fluid flow when the concentration level of the solute in the solvent is finite (finite dilution of solute approximation). It is shown that simultaneous heat and mass transfer during solid sphere dissolution in a uniform fluid flow, axisymmetric shear flow, shear-translational flow and flow with a parabolic velocity profile can be described by a system of generalized equations of convective diffusion and energy. Solutions of diffusion and energy equations are obtained in an exact analytical form. Using a general solution the asymptotic solutions for heat and mass transfer problem during spherical solid particle dissolution in a uniform fluid flow, axisymmetric shear flow, shear-translational flow and flow with parabolic velocity profile are derived. Theoretical results are in compliance with the available experimental data on falling urea particles dissolution in water and for solid sphere dissolution in a shear flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity of liquid, m2 s−1

b :

coefficient in Eq. 16

c p :

specific heat, kJ kg−1 K−1

d :

coefficient in Eq. 16, K−1

D :

coefficient of molecular diffusion, m2 s−1

f(θ):

function, Eq. 3

F(φ):

function, Eq. 15

\(K_1 = \frac{{c_p }} {{dL}}\) :

dimensionless number

k c :

local mass transfer coefficient, m s−1

\(\overline{k}_{\text{c}}\) :

averaged mass transfer coefficient, m s− 1

L :

heat of dissolution, kJ kg−1

Le:

Lewis number (D/a)

N A :

mass flux density of the solute, kgm2 s−1

Pe1:

Peclet number for uniform-translational flow (RU/D)

Pe2:

Peclet number for axisymmetric shear flow (Ω R2/D)

Pe3:

Peclet number for a flow with parabolic velocity profile (Λ R3/D)

r :

radial coordinate, m

R :

sphere radius, m

R 0 :

initial radius of a sphere, m

Sh:

Sherwood number (Rkc/D)

\(\overline {{\text{Sh}}} \) :

\((R\overline{k} _{\text{c}} {\text{/}}D)\)

Sc:

Schmidt number (ν/D)

T :

temperature of liquid, K

T s :

equilibrium temperature corresponding to bulk concentration, K

x A :

mass fraction of the solute

\(x_{A_s } \) :

mass fraction of the solute at solid–liquid interface

\(x_{A_0 } \) :

mass fraction of the solute in the bulk of liquid

\(x^\prime_{A_s}\) :

equilibrium mass fraction of solute at the bulk temperature

U :

uniform fluid flow velocity, m s−1

v y , vθ:

velocity components, m s−1

y :

distance from a surface of a solid sphere, m

Γ(z):

gamma function

γ:

correction factor for the effect of finite solute concentration level for isothermal dissolution

ζ c T :

variables, Eq. 10, m9/2 s− 3/2

η c T :

similarity variables, Eq. 11

θ:

angular coordinate, rad

θ0:

angle of accumulation, rad

Λ:

curvature of velocity profile on the axis of symmetry away from a particle, m−1 s−1

λ:

thermal conductivity of liquid, kJ m−1 s−1 K− 1

μ:

dynamic viscosity of liquid, Pa s

ν:

kinematic viscosity of liquid, m2 s−1

ρ:

bulk liquid density, kg m−3

ρ0:

saturated solution density, kg m−3

ρs:

solid density, kg m−3

φ:

dimensionless average mass velocity

Ω:

velocity gradient, s−1

ωs:

relative intensity of shear and translational motions (10ΩR/U)

0:

value in the bulk of liquid

A :

solute

θ:

tangential direction

is:

isothermal

0:

infinite dilution of the solute in a solvent

References

  1. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions. Dover, New York

    Google Scholar 

  2. Aksel’rud GA, Oreper GM (1974) Mass exchange between a solid spherical body and a current-carrying liquid. J Eng Phys 27:1492–1494

    Google Scholar 

  3. Asano Y, Kataoka M, Ikeda Y, Hasegawa S, Takashima Y, Tomiyasu H (1995) New method for dissolving UO2 using ozone. Prog Nucl Energy 29(Suppl):243–249

    Article  CAS  Google Scholar 

  4. Batchelor GK (1979) Mass transfer from a particle suspended in a fluid with a steady linear ambient velocity distribution. J Fluid Mech 95:369–400

    CAS  Google Scholar 

  5. Chow CY (1966) Flow around a nonconducting sphere in a current-carrying fluid. Phys Fluids 9:933–936

    Google Scholar 

  6. Elperin T, Fominykh A (1999) Effect of absorbate concentration level on dissolving translating bubble collapse governed by simultaneous heat and mass transfer. Heat Mass Transfer 35:517–524

    Article  CAS  Google Scholar 

  7. Elperin T, Fominykh A (2001) Effect of solute concentration level on the rate of coupled mass and heat transfer during solid sphere dissolution in a uniform fluid flow. Chem Eng Sci 56:3065–3074

    Article  CAS  Google Scholar 

  8. Elperin T, Fominykh A (2003) Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber. Chem Eng Sci 58:3555–3564

    Article  CAS  Google Scholar 

  9. Fredrickson GH, Leibler L (1996) Theory of diffusion-controlled reactions in polymers under flow. Macromolecules 29:2674–2685

    Article  CAS  Google Scholar 

  10. Gupalo IP, Riazantsev IS (1972) Diffusion on a particle in the shear flow of a viscous fluid. Approximation of the diffusion boundary layer. J Appl Math Mech USS 36:447–451

    Article  Google Scholar 

  11. Gupalo IP, Riazantsev IS, Ulin VI (1975) Diffusion on a particle in a homogeneous translational-shear flow. J Appl Math Mech USS 39:472–479

    Article  Google Scholar 

  12. Gupalo IP, Polianin AD, Riazantsev IS (1976) Diffusion to a particle at large Peclet numbers in the case of arbitrary axisymmetric flow over a viscous fluid. J Appl Math Mech USS 40:893–898

    Article  Google Scholar 

  13. Karp-Boss L, Boss E, Jumars PA (1996) Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr Mar Biol Annu Rev 34:71–107

    Google Scholar 

  14. Kutateladze SS, Nakoryakov VE, Isakov MS (1982) Electrochemical measurements of mass transfer between a sphere and liquid in motion at high Peclet numbers. J Fluid Mech 125:453–462

    CAS  Google Scholar 

  15. Levich BG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  16. Lochiel AC, Calderbank PH (1964) Mass transfer in the continuous phase around axisymmetric bodies of revolution. Chem Eng Sci 19:471–484

    Article  CAS  Google Scholar 

  17. Luchsinger RH, Bergersen B, Mitchell JG (1999) Bacterial swimming strategies and turbulence. Biophys J 77:2377–2386

    CAS  PubMed  Google Scholar 

  18. Noh DS, Koh Y, Kang IS (1998) Numerical solutions for shape evolution of a particle growing in axisymmetric flows of supersaturated solution. J Cryst Growth 183:427–440

    Article  CAS  Google Scholar 

  19. Rice RG, Jones PJ (1979) Complete dissolution of spherical particles in free-fall. Chem Eng Sci 34:847–852

    Article  CAS  Google Scholar 

  20. Simha R (1936) Untersuchungen uber diev Viscositat von Suspensionen und Losungen. Kolloid Z 76:16–19

    CAS  Google Scholar 

  21. Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Phil Soc 9:8–106

    Google Scholar 

  22. Taylor GI (1932) The viscosity of fluid containing small drops of another fluid. Proc R Soc Lond A 138:41–48

    Google Scholar 

  23. Traylor ED, Burris L, Geankoplis CJ (1965) Mass transport from a uranium sphere to liquid cadmium in highly turbulent flow. Ind Eng Chem Fund 4:119–125

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Elperin.

Appendix

Appendix

1.1 Derivation of Eqs. 5 and 6

Replacing variables (y, θ) by (ψ, θ) we obtain:

$$ \left( {\frac{{\partial x_A (\theta ,y)}} {{\partial \theta }}} \right)_y = \left( {\frac{{\partial x_A }} {{\partial \theta }}} \right)_\psi + \frac{{\partial x_A }} {{\partial \psi }}\frac{{\partial \psi }} {{\partial \theta }} = \left( {\frac{{\partial x_A }} {{\partial \theta }}} \right)_\psi + \frac{{\partial x_A }} {{\partial \psi }}v_y R^2 \sin \theta , $$
(26)
$$ \frac{{\partial x_A (\theta ,y)}} {{\partial y}} = \frac{{\partial x_A }} {{\partial \psi }}\frac{{\partial \psi }} {{\partial y}} = - v_\theta R\sin \theta \frac{{\partial x_A }} {{\partial \psi }}, $$
(27)
$$ \frac{{\partial ^2 x_A (\theta ,y)}} {{\partial y^2 }} = \frac{\partial } {{\partial y}}\left[ { - v_\theta R\sin \theta \frac{{\partial x_A }} {{\partial \psi }}} \right] = - v_\theta R\sin \theta \frac{\partial } {{\partial \psi }}\left[ { - v_\theta R\sin \theta \frac{{\partial x_A }} {{\partial \psi }}} \right]. $$
(28)

Substituting Eqs. 26, 27 and 28 into Eq. 1 we obtain:

$$ \frac{1} {R}\frac{{\partial x_A }} {{\partial \theta }} = DR\sin \theta \left\{ {\frac{\partial } {{\partial \psi }}\left[ {(v_\theta R\sin \theta )\frac{{\partial x_A }} {{\partial \psi }}} \right] + \frac{1} {{1 - x_{A_s } }}\left( {\frac{{\partial x_A }} {{\partial \psi }}} \right)_{\psi = 0} \frac{{\partial x_A }} {{\partial \psi }}} \right\}. $$
(29)

Expressing vθ in terms of ψ

$$ v_\theta = - 2\sqrt \psi \sqrt {f(\theta )} (R\sin \theta )^{ - 1} $$
(30)

After substitution of Eq. 30 to Eq. 29 we obtain Eq. 5. Following similar approach we obtain energy Eq. 6 from Eq. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elperin, T., Fominykh, A. Mass and heat transfer during solid sphere dissolution in a non-uniform fluid flow. Heat Mass Transfer 41, 442–448 (2005). https://doi.org/10.1007/s00231-004-0555-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-004-0555-z

Keywords

Navigation