Skip to main content
Log in

A motivic interpretation of Whittaker periods for \(\textrm{GL}_n\)

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Admitting the existence of conjectural motives attached to cohomological irreducible cuspidal automorphic representations of \(\textrm{GL}_n\), we write down Raghuram and Shahidi’s Whittaker periods in terms of Yoshida’s fundamental periods when the base field is a totally real number field or a CM field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here \(H^{\pm }_\textrm{dR}({\mathcal {M}}^{[\rho \tau ]})\) play the roles of \(\rho H^{\pm }_\textrm{dR}({\mathcal {M}})\) introduced in [26] and [28]; the \(\rho \)-twisted modules \(\rho H^{\pm }_\textrm{dR}({\mathcal {M}})\) seem to be defined only when the base field of \({\mathcal {M}}\) is a subfield of \(\textbf{C}\) stable under the complex conjugation \(\rho \).

  2. Note that \(E^\sigma \textsf{F}^{(\tau , \rho )}=E^\sigma \textsf{F}^\tau \) when \(\tau :\textsf{F}\hookrightarrow \textbf{C}\) is a real embedding.

  3. For a CM field F, we have \(F^{(\tau ,\rho )}=F^\tau \) since \(\rho \tau (F)\) coincides with \(\tau (F)\).

References

  1. Ash, A.: Non-square-integrable cohomology of arithmetic groups. Duke Math. J. 47, 435–449 (1980)

    Article  MathSciNet  Google Scholar 

  2. Bhagwat, C.: On Deligne’s periods for tensor product motives. C. R. Acad. Sci. Paris Ser. I(353), 191–195 (2015)

    MathSciNet  Google Scholar 

  3. Bhagwat, C., Raghuram, A.: Endoscopy and the cohomology of \({\rm GL}(n)\). Bull. Iran. Math. Soc. 43, 317–335 (2017)

    MathSciNet  Google Scholar 

  4. Clozel, L.: Motifs et formes automorphes: applications du principe, de fonctorialité. In: Clozel et, L., Milne, J.S. (Eds.) Automorphic Forms, Shimura varieties and \(L\)-functions, vol. 1, pp. 77–159. Acad. Press (1990)

  5. Deligne, P.: Valeurs de fonctions \(L\) et périodes d’intégrales. In: Automorphic Forms, Representations, and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Proc. Symp. Pure Math., 33 Part II, pp. 247–289. Amer. Math. Soc., Providence (1979)

  6. Goodman, R., Wallach, N.: Symmetry, Representations, and Invariants, Graduate Text in Mathematics, vol. 255. Springer (2009)

  7. Grobner, H., Raghuram, A.: On some arithmetic properties of automorphic forms of \({\rm GL}_m\) over a division algebra. Int. J. Number Theory 10, 963–1013 (2014)

    Article  MathSciNet  Google Scholar 

  8. Hara, T., Miyazaki, T., Namikawa, K.: Uniform Integrality of critical values of the Rankin–Selberg \(L\)-function for \({\rm GL}_{n}\times {\rm GL}_{n-1}\) (preprint)

  9. Hara, T., Namikawa, K.: A cohomological interpretation of Archimedean zeta integrals for \({\rm GL}_3 \times {\rm GL}_2\). Res. Number Theory 7, 68 (2021)

    Article  Google Scholar 

  10. Harris, M.: \(L\)-functions and periods of polarized regular motives. J. Reine Angew. Math. 483, 75–161 (1997)

    MathSciNet  Google Scholar 

  11. Harris, M., Lin, J.: Period relations and special values of Rankin–Selberg \(L\)-functions. In: Representation Theory, Number Theory, and Invariant Theory, Progr. Math., vol. 323, pp. 235–264. Birkhäuser/Springer, Cham (2017)

  12. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  13. Hida, H.: On the critical values of \(L\)-functions of \({\rm GL}(2)\) and \({\rm GL}(2) \times {\rm GL}(2)\). Duke Math. J. 74, 431–529 (1994)

    MathSciNet  Google Scholar 

  14. Hirano, M., Ishii, T., Miyazaki, T.: Archimedean zeta integrals for \({\rm GL}(3) \times {\rm GL}(2)\). Mem. Amer. Math. Soc. 278(1366), viii+122 (2022)

  15. Ishii, T., Miyazaki, T.: Calculus of Archimedean Rankin–Selberg integrals with recurrence relations. Represent. Theory 26, 714–763 (2022)

    Article  MathSciNet  Google Scholar 

  16. Januszewski, F.: Non-abelian \(p\)-adic Rankin–Selberg \(L\)-functions and non-vanishing of central \(L\)-values. Am. J. Math. (to appear)

  17. Kazhdan, D., Mazur, B., Schmidt, C.-G.: Relative modular symbols and Rankin–Selberg convolutions. J. Reine Angew. Math. 519, 97–141 (2000)

    MathSciNet  Google Scholar 

  18. Knapp, A.W.: Local Langlands correspondence: the archimedean case. Proceedings of symposia in pure mathematics, 55(part 2), 393–410 (1994)

  19. Kontsevich, M., Zagier, D.: Periods. In: Engquist, B., Schmid, W. (eds.) Mathematics Unlimited—2001 and Beyond, pp. 771–808. Springer (2001)

  20. Li, J.-S., Liu, D., Sun, B.: Archimedean period relations and period relations for Rankin–Selberg convolutions. preprint arXiv:2109.05273

  21. Mahnkopf, J.: Cohomology of arithmetic groups, parabolic subgroups and the special values of \(L\)-functions on \({\rm GL}_n\). J. Inst. Math. Jussieu 4, 553–637 (2005)

    Article  MathSciNet  Google Scholar 

  22. Raghuram, A., Shahidi, F.: On certain period relations for cusp forms on \({\rm GL}_n\). Int. Math. Res. Not. 2008, 1–23 (2008)

    Google Scholar 

  23. Raghuram, A.: Critical values of Rankin-Selberg L-functions for \({\rm GL}_n \times {\rm GL}_{n-1}\) and the symmetric cube L-functions for \({\rm GL}_2\). Forum. Math. 28, 457–489 (2016)

    Article  MathSciNet  Google Scholar 

  24. Shintani, T.: On an explicit formula for class-\(1\) “Whittaker functions’’ on \(\rm GL _n\) over \(\mathfrak{P} \)-adic fields. Proc. Japan Acad. 52, 180–182 (1976)

    MathSciNet  Google Scholar 

  25. Sun, B.: The nonvanishing hypothesis at infinity for Rankin–Selberg convolutions. J. Am. Math. Soc. 30, 1–25 (2017)

    Article  MathSciNet  Google Scholar 

  26. Yoshida, H.: On the zeta functions of Shimura varieties and periods of Hilbert modular forms. Duke Math. J. 75, 121–191 (1994)

    Article  MathSciNet  Google Scholar 

  27. Yoshida, H.: Motives and Siegel modular forms. Am. J. Math. 123, 1171–1197 (2001)

    Article  MathSciNet  Google Scholar 

  28. Yoshida, H.: On the fundamental periods of a motive. In: Recent advances in Hodge theory, London Math. Soc. Lecture Note Ser., vol. 427, pp. 393–412. Cambridge Univ. Press, Cambridge (2016)

Download references

Acknowledgements

The authors are sincerely grateful to Tadashi Miyazaki for the valuable discussions and for providing us the preprint version of [15]. They would also express their sincere gratitude to the anonymous referee for his or her careful reading and many valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Namikawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. Hara was supported by Grant-in-Aid for Scientific Research (C) Grant Number JP22K03237. K. Namikawa was supported by Grant-in-Aid for Scientific Research (C) Grant Number JP21K03207.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, T., Namikawa, K. A motivic interpretation of Whittaker periods for \(\textrm{GL}_n\). manuscripta math. 174, 303–353 (2024). https://doi.org/10.1007/s00229-023-01507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-023-01507-1

Mathematics Subject Classification

Navigation