Skip to main content
Log in

Construct holomorphic invariants in Čech cohomology by a combinatorial formula

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let E be a holomorphic vector bundle over a complex manifold X. We introduce T invariants of E in Čech cohomology groups via a combinatorial formula. When X is compact, up to certain normalized factors, the T invariants of E coincide with the power sums of the Chern roots of E. We refine the first T invariant and show that it detects the degeneration of the Fröhlicher spectral sequence and characterizes the flatness of holomorphic line bundles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeppli, A.: On the cohomology structure of Stein manifolds. In: Proceedings of Conference Complex Analysis. Springer, Berlin, pp. 58–70 (1965)

  2. Atiyah, M.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181–207 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angella, D., Dloussky, G., Tomassini, A.: On Bott–Chern cohomology of compact complex surfaces. Ann. Mat. Pura Appl. (4) 195(1), 199–217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angella, D., Franzini, M., Rossi, F.: Degree of non-Kählerianity for 6-dimensional nilmanifolds. Manuscr. Math. 148(1–2), 177–211 (2015)

    Article  MATH  Google Scholar 

  5. Angella, D., Tomassini, A.: On the \(\partial {{\bar{\partial }}}\)-lemma and Bott–Chern cohomology. Invent. Math. 192(1), 71–81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bott, R.: Lectures on Characteristic Classes and Foliations, Lecture Notes in Mathematics. In: Dold, A., Eckmann, B. (eds.) Lectures on algebraic and differential topology, vol. 279, pp. 1–94. Springer, Berlin (1972)

    Chapter  Google Scholar 

  7. Bott, R.: On the Chern–Weil homomorphism and the continuous cohomology of Lie-groups. Adv. Math. 11, 289–303 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bott, R., Chern, S.: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math. 114, 71–112 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borel, A.: A Spectral Sequence for Complex-Analytic Bundles, Appendix Two in: Friedrich Hirzebruch. Topological Methods in Algebraic Geometry, 3rd edn. Springer, Berlin (1966)

    Google Scholar 

  10. Brylinski, J.: Loop Spaces, Characteristic Classes and Geometric Quantization. Progress in Mathematics, 107. Birkhäuser Boston Inc., Boston, MA (1993)

    Book  Google Scholar 

  11. Bott, R., Tu, L.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, 82. Springer, New York (1982)

    Book  Google Scholar 

  12. Chern, S.: Characteristic classes of Hermitian manifolds. Ann. Math. 2(47), 85–121 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cordero, L., Fernandez, M., Gray, A., Ugarte, L.: Compact nilmanifolds with nilpotent complex structures: Dolbeault cohomology. Trans. Am. Math. Soc. 352, 5405–5433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Corrêa, M., Suwa, T.: Localization of Bott-Chern classes and Hermitian residues. J. Lond. Math. Soc. (2) 101(1), 349–372 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fang, H.: A geometric criterion for prescribing residues and some applications. Ann. Inst. Fourier (Grenoble) 71(5), 1963–2018 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frölicher, A.: Relations between the cohomology groups of Dolbeault and topological invariants. Proc. Nat. Acad. Sci. U.S.A. 41, 641–644 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fulton, W.: Intersection Theory. A Series of Modern Surveys in Mathematics. Springer, Berlin (1998)

    Google Scholar 

  18. Giraud, J.: Cohomologie non abélienne. Die Grundlehren der mathematischen Wissenschaften, vol. 179. Springer, Berlin (1971)

    Google Scholar 

  19. Grauert, H., Fritzsche, K.: Several Complex Variables. Translated from the German. Graduate Texts in Mathematics, vol. 38. Springer, New York (1976)

    Google Scholar 

  20. Gillet, H., Soulé, C.: Characteristic classes for algebraic vector bundles with Hermitian metric. I. II. Ann. Math. (2) 131, 163–203 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley-Interscience, New York (1978)

    MATH  Google Scholar 

  22. Hodge, W., Atiyah, M.: Integrals of the second kind on an algebraic variety. Ann. Math. (2) 62, 56–91 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  24. Hirzebruch, F.: Topological Methods in Algebraic Geometry. Classics in Mathematics. Springer, Berlin (1995)

    Google Scholar 

  25. Kodaira, K.: Green’s forms and meromorphic functions on compact analytic varieties. Can. J. Math. 3, 108–128 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lehmann, D.: Systèmes d’alvéoles et intégration sur le complexe Čech-de Rham. Publications de l’IRMA, 23, No VI, Université de Lille I (1991)

  27. Lehmann, D., Suwa, T.: Residues of holomorphic vector fields relative to singular invariant subvarieties. J. Differ. Geom. 42(1), 165–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rollenske, S.: The Frölicher spectral sequence can be arbitrarily non-degenerate. Math. Ann. 341(3), 623–628 (2008). Bigalke, L., Rollenske, S.: Erratum to: The Frölicher spectral sequence can be arbitrarily non-degenerate. Math. Ann. 358(3–4), 1119–1123 (2014)

  29. Rao, S., Yang, S., Yang, X.: Dolbeault cohomologies of blowing up complex manifold II: bundle-valued case. J. Math. Pures Appl. (9) 133, 1–38 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sharygin, G.: Local formulas for the characteristic classes of a principal \(GL_n\)-bundle. Mat. Sb. 199(10), 127–158 (2008). (Translation in Sb. Math. 199(9–10), 1547–1577 (2008))

    MathSciNet  Google Scholar 

  31. Voisin, C.: Hodge Theory and Complex Algebraic Geometry. I. Translated from the French Original by Leila Schneps, Cambridge Studies in Advanced Mathematics 76. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The author appreciates greatly his advisor Prof. Xiaojun Huang for emphasizing the importance of constructing holomorphic invariants. He would like to thank Dr. Xu Yang for helpful discussion and warm encouragement, and Prof. Xuguang Lu for teaching him the permutation technique. Finally, the author would like to thank the referees for the careful reading and the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanlong Fang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Lemma 2.5

Proof of Lemma 2.5

Proof

Since \(\{g_{ij}\}\) and \(\{{{\widetilde{g}}}_{ij}\}\) are two systems of transition functions of E with respect to \({\mathcal {U}}\), there exists a Čech 0-cochain

$$\begin{aligned} h:=\bigoplus \limits _{i_1}h_{i_1}\in \bigoplus \limits _{i_1}\Gamma _\textrm{hol} (U_{i_1},GL(M,{\mathbb {C}})), \end{aligned}$$
(145)

such that \({{\widetilde{g}}}_{ij}=h_i^{-1}g_{ij}h_j\) for \(i,j\in I\). Let \({{\widehat{f}}}_k(E,g)\), \({{\widehat{f}}}_k(E,{{\widetilde{g}}})\) be the Čech k-cocycles associated with \(f_k(E,g)\), \(f_k(E,g)\), respectively, as follows.

$$\begin{aligned}{} & {} {{\widehat{f}}}_k(E,g)=\bigoplus \limits _{i_1<\cdots<i_{k+1}}t_{i_1\cdots i_{k+1}}\in \bigoplus \limits _{i_1<\cdots <i_{k+1}}\Gamma (U_{i_1\cdots i_{k+1}},\Omega ^k), \end{aligned}$$
(146)
$$\begin{aligned}{} & {} {{\widehat{f}}}_k(E,\widetilde{g})=\bigoplus \limits _{i_1<\cdots<i_{k+1}}{{\widetilde{t}}}_{i_1\cdots i_{k+1}}\in \bigoplus \limits _{i_1<\cdots <i_{k+1}}\Gamma (U_{i_1\cdots i_{k+1}},\Omega ^k). \end{aligned}$$
(147)

Here \(t_{i_1\cdots i_{k+1}}\) and \({{\widetilde{t}}}_{i_1\cdots i_{k+1}}\) are defined by (24) with respect to g and \({{\widetilde{g}}}\), respectively.

To prove Lemma 2.5, it suffices to prove that there is a Čech \((k-1)\)-cochain

$$\begin{aligned} h_{k-1}(E,g,\widetilde{g})=\bigoplus \limits _{j_1<\cdots<j_{k}}s_{j_1\cdots j_{k}}\in \bigoplus \limits _{j_1<\cdots <j_{k}}\Gamma (U_{j_1\cdots j_{k}},\Omega ^k), \end{aligned}$$
(148)

such that for any \(i_1,\ldots ,i_{k+1}\in I\), we have

$$\begin{aligned} {{\widetilde{t}}}_{i_1\cdots i_{k+1}}- t_{i_1\cdots i_{k+1}}=\sum _{j=1}^{k+1}(-1)^{j-1}s_{i_1\cdots {{\widehat{i}}}_j\cdots i_{k+1}}\big |_{U_{i_1\cdots i_{k+1}}}. \end{aligned}$$
(149)

Notice that

$$\begin{aligned} {{\widetilde{g}}}_{\alpha \beta }^{-1}d\widetilde{g}_{\alpha \beta }=h_{\beta }^{-1}\big (g_{\alpha \beta }^{-1}dg_{\alpha \beta }+g_{\alpha \beta }^{-1}h_{\alpha }dh_{\alpha }^{-1}g_{\alpha \beta }+(-1)\cdot h_{\beta }dh_{\beta }^{-1}\big )h_{\beta }. \end{aligned}$$
(150)

Applying (150) for \(\beta =i_{\sigma (k+1)}\) and \(\alpha =i_{\sigma (1)},i_{\sigma (2)},i_{\sigma (3)},\ldots ,i_{\sigma (k)}\), we get

$$\begin{aligned} \begin{aligned} {{\widetilde{t}}}_{i_1\cdots i_{k+1}}&=\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\\&\cdot tr\big ({{\widetilde{g}}}^{-1}_{i_{\sigma (1)}i_{\sigma (k+1)}}d{{\widetilde{g}}}_{i_{\sigma (1)}i_{\sigma (k+1)}}{{\widetilde{g}}}^{-1}_{i_{\sigma (2)}i_{\sigma (k+1)}}d{{\widetilde{g}}}_{i_{\sigma (2)}i_{\sigma (k+1)}}{{\widetilde{g}}}^{-1}_{i_{\sigma (3)}i_{\sigma (k+1)}}\\&\qquad d{{\widetilde{g}}}_{i_{\sigma (3)}i_{\sigma (k+1)}}\cdots {{\widetilde{g}}}^{-1}_{i_{\sigma (k)}i_{\sigma (k+1)}}d{{\widetilde{g}}}_{i_{\sigma (k)}i_{\sigma (k+1)}}\big )\\&=\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\cdot tr\big \{\prod _{l=1}^kh_{i_{\sigma (k+1)}}^{-1}\big (g_{i_{\sigma (l)} i_{\sigma (k+1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (k+1)}}\\&\quad +g_{i_{\sigma (l)} i_{\sigma (k+1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (k+1)}}+(-1)\cdot h_{i_{\sigma (k+1)}}dh_{i_{\sigma (k+1)}}^{-1}\big )h_{i_{\sigma (k+1)}}\big \}\\&=\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\cdot tr\big \{\prod _{l=1}^k\big (g_{i_{\sigma (l)} i_{\sigma (k+1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (k+1)}}\\&\quad +g_{i_{\sigma (l)}i_{\sigma (k+1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (k+1)}}+(-1)\cdot h_{i_{\sigma (k+1)}}dh_{i_{\sigma (k+1)}}^{-1}\big )\big \}. \end{aligned} \end{aligned}$$
(151)

In order to compute the monomials appearing in the expansion of (151) by distribution law, we introduce the following notation. For integer \(t\ge 0\) and integers \(a_1,\ldots ,a_t\), we define the counting function \(\delta _{a_1\cdots a_t}\) from \(\mathbb Z\) to the set \(\{0,1\}\) as follows.

$$\begin{aligned} \delta _{a_1\cdots a_t}(l)=\left\{ \begin{array}{lll} 1&{}\quad \textrm{if}&{}\quad l\in \{a_1,\ldots ,a_t\};\\ 0&{}\quad \textrm{if}&{}\quad l\notin \{a_1,\ldots ,a_t\}. \end{array}\right. \end{aligned}$$
(152)

Notice that when \(t=0\), \(\delta _{a_1\cdots a_t}\equiv 0\); we denote it by \(\delta _{\emptyset }\).

Fix a permutation \(\sigma \in S_{k+1}\). For integers jn such that \(j\ge 0\), \(n\ge 0\) and \(j+n\le k\), and distinct integers \(u_1,\ldots ,u_j,v_1,\ldots ,v_n\in \{1,\ldots ,k\}\) (by convention if \(j=0\), there is no u; if \(n=0\), there is no v), we define

$$\begin{aligned} \begin{aligned}&\Delta ^{\sigma }_{u_1\cdots u_j,v_{1}\cdots v_{n}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}):=tr\big \{\prod _{l=1}^k\big (g_{i_{\sigma (l)} i_{\sigma (k+1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (k+1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)-\delta _{v_1\cdots v_n}(l)}\\&\quad \cdot \big (g_{i_{\sigma (l)}i_{\sigma (k+1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (k+1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\cdot \big (-h_{i_{\sigma (k+1)}}dh_{i_{\sigma (k+1)}}^{-1}\big )^{\delta _{v_1\cdots v_n}(l)}\big \}. \end{aligned} \end{aligned}$$
(153)

Note that here we use the convention that

$$\begin{aligned}{} & {} \big (g_{i_{\sigma (l)} i_{\sigma (k+1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (k+1)}}\big )^{0}= \big (g_{i_{\sigma (l)}i_{\sigma (k+1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (k+1)}}\big )^{0}\nonumber \\{} & {} \quad =\big (-h_{i_{\sigma (k+1)}}dh_{i_{\sigma (k+1)}}^{-1}\big )^{0}=I_{M\times M}, \end{aligned}$$
(154)

where \(I_{M\times M}\) is the identity matrix of rank M. We also denote \(\Delta ^{\sigma }_{u_1\cdots u_j,v_{1}\cdots v_{n}}(\widetilde{t}_{i_1\cdots i_{k+1}})\) by \(\Delta ^{\sigma }_{\emptyset ,v_{1}\cdots v_{n}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\) when \(j=0\) and \(n\ge 1\); denote \(\Delta ^{\sigma }_{u_1\cdots u_j,v_{1}\cdots v_{n}}(\widetilde{t}_{i_1\cdots i_{k+1}})\) by \(\Delta ^{\sigma }_{u_{1}\cdots u_{j},\emptyset }({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\) when \(n=0\) and \(j\ge 1\); denote \(\Delta ^{\sigma }_{u_1\cdots u_j,v_{1}\cdots v_{n}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\) by \(\Delta ^{\sigma }_{\emptyset ,\emptyset }({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\) when \(j=n=0\).

Applying distribution law to (151), we have

$$\begin{aligned} \begin{aligned} {{\widetilde{t}}}_{i_1\cdots i_{k+1}}&=\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!} \sum _{\begin{array}{c} n\ge 2,\,0\le j\le k-n\,; \\ 1\le u_1<u_2<\cdots<u_j\le k\,;\\ 1\le v_1<v_2<\cdots<v_n\le k\,;\\ u_1,\ldots ,u_j,v_1,\ldots ,v_n\, {\text {are distinct}} \end{array}}\Delta ^{\sigma }_{u_1\cdots u_j,v_{1}\cdots v_{n}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!} \sum _{\begin{array}{c} n=1,\,1\le j\le k-1\,; \\ 1\le u_1<\cdots<u_j\le k\,;\\ 1\le v_1\le k\,;\\ u_1,\ldots ,u_j,v_1\, {\text {are distinct}} \end{array}}\Delta ^{\sigma }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!} \sum _{\begin{array}{c} n=1,\, j=0\,; \\ 1\le v_1\le k\,; \end{array}}\Delta ^{\sigma }_{\emptyset ,v_{1}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!} \sum _{\begin{array}{c} n=0,\,1\le j\le k\,; \\ 1\le u_1<u_2<\cdots <u_j\le k\,; \end{array}}\Delta ^{\sigma }_{u_1\cdots u_j,\emptyset }({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad + \sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\cdot \Delta ^{\sigma }_{\emptyset ,\emptyset }({{\widetilde{t}}}_{i_1\cdots i_{k+1}}).\\&=:I_1+I_2+I_3+I_4+I_5. \end{aligned} \end{aligned}$$
(155)

We first compute \(I_1\) as follows.

Claim I. For integers jn such that \(n\ge 2\) and \(0\le j\le k-n\), and distinct integers \(u_1,\ldots ,u_j,v_1,\ldots ,v_n\in \{1,\ldots ,k\}\), the following identity holds,

$$\begin{aligned} \sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\cdot \Delta ^{\sigma }_{u_1\cdots u_j,v_{1}\cdots v_{n}}(\widetilde{t}_{i_1\cdots i_{k+1}})=0. \end{aligned}$$
(156)

Therefore, \(I_1\equiv 0\).

Proof of Claim I. The proof is similar to the proof of Claim I of Lemma 2.4. Denote by \(\tau \) the permutation \((v_1,v_2)\in S_{k+1}\). Notice that

$$\begin{aligned} \begin{aligned}&\Delta ^{\sigma \circ \tau }_{u_1\cdots u_j,v_{1}\cdots v_{n}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})=tr\big \{\prod _{l=1}^k\big (g_{i_{(\sigma \circ \tau )(l)} i_{(\sigma \circ \tau )(k+1)}}^{-1}dg_{i_{(\sigma \circ \tau )(l)} i_{(\sigma \circ \tau )(k+1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)-\delta _{v_1\cdots v_n}(l)}\\&\qquad \cdot \big (g_{i_{(\sigma \circ \tau )(l)}i_{(\sigma \circ \tau )(k+1)}}^{-1}h_{i_{(\sigma \circ \tau )(l)}}dh_{i_{(\sigma \circ \tau )(l)}}^{-1}g_{i_{(\sigma \circ \tau )(l)}i_{(\sigma \circ \tau )(k+1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (-h_{i_{(\sigma \circ \tau )(k+1)}}dh_{i_{(\sigma \circ \tau )(k+1)}}^{-1}\big )^{\delta _{v_1\cdots v_n}(l)}\big \}\\&\quad =tr\big \{\prod _{l=1}^k\big (g_{i_{\sigma (l)} i_{\sigma (k+1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (k+1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)-\delta _{v_1\cdots v_n}(l)}\\&\qquad \cdot \big (g_{i_{\sigma (l)}i_{\sigma (k+1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (k+1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (-h_{i_{\sigma (k+1)}}dh_{i_{\sigma (k+1)}}^{-1}\big )^{\delta _{v_1\cdots v_n}(l)}\big \}=\Delta ^{\sigma }_{u_1\cdots u_j,v_1v_2\cdots v_n}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}). \end{aligned} \end{aligned}$$
(157)

Hence,

$$\begin{aligned} \begin{aligned}&\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\cdot \Delta ^{\sigma }_{u_1\cdots u_j,v_1v_2\cdots v_n}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad =\sum _{\sigma \circ \tau \in S_{k+1}}\frac{sgn(\sigma \circ \tau )}{(k+1)!}\cdot \Delta ^{\sigma \circ \tau }_{u_1\cdots u_j,v_{1}\cdots v_{n}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad =sgn(\tau )\cdot \sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\cdot \Delta ^{\sigma \circ \tau }_{u_1\cdots u_j,v_{1}\cdots v_{n}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad =-\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\cdot \Delta ^{\sigma }_{u_1\cdots u_j,v_1v_2\cdots v_n}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}). \end{aligned} \end{aligned}$$
(158)

We complete the proof of Claim I. \(\square \)

In order to compute \(I_4\), we introduce the following notation.

Fix \(\sigma \in S_{k+1}\). For integers jl such that \(j\ge 1\) and \(0\le l\le k-j\), and distinct integers \(u_1,\ldots ,u_j,x_1,\ldots ,x_l\in \{1,\ldots ,k\}\) (by convention when \(l=0\), there is no x), we define

$$\begin{aligned} \begin{aligned}&\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})=tr\big \{\prod _{l=1}^k\big (g_{i_{\sigma (l)} i_{\sigma (u_1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (u_1)}}\big )^{1-\delta _{x_1\cdots x_l}(l)-\delta _{u_1\cdots u_j}(l)}\\&\quad \cdot \big (-g_{i_{\sigma (u_1)} i_{\sigma (k+1)}}dg_{i_{\sigma (u_1)} i_{\sigma (k+1)}}^{-1}\big )^{\delta _{x_1\cdots x_l}(l)}\cdot \big (g_{i_{\sigma (l)}i_{\sigma (u_1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (u_1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}. \end{aligned} \end{aligned}$$
(159)

We also denote \(\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\) by \(\Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}(\widetilde{t}_{i_1\cdots i_{k+1}})\) when \(l=0\).

Claim II.

$$\begin{aligned} \begin{aligned} I_4&=\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k\,; \\ 1\le u_1<u_2<\cdots<u_j\le k; \end{array}}\Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<u_2<\cdots <u_j\le k;\\ 1\le x_1\le k,\, x_1\notin \{u_1,\ldots ,u_j\} \end{array}}\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}).\\ \end{aligned} \end{aligned}$$
(160)

Proof of Claim II. Recall the following identities

$$\begin{aligned} g_{\gamma \beta }^{-1}h_{\gamma }^{-1}dh_{\gamma }g_{\gamma \beta }=g_{\alpha \beta }^{-1}g_{\gamma \alpha }^{-1}h_{\gamma }^{-1}dh_{\gamma }g_{\gamma \alpha }g_{\alpha \beta }\,\,\,\,\,\textrm{and}\,\,\,g_{\delta \beta }^{-1}dg_{\delta \beta }=g_{\alpha \beta }^{-1}g_{\delta \alpha }^{-1}dg_{\delta \alpha }g_{\alpha \beta }+g_{\alpha \beta }^{-1}dg_{\alpha \beta }.\nonumber \\ \end{aligned}$$
(161)

Applying (161), we have

$$\begin{aligned} \begin{aligned}&\Delta ^{\sigma }_{u_1\cdots u_j,\emptyset }({{\widetilde{t}}}_{i_1\cdots i_{k+1}})=tr\big \{\prod _{l=1}^k\big (g_{i_{\sigma (l)} i_{\sigma (k+1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (k+1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (g_{i_{\sigma (l)}i_{\sigma (k+1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (k+1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}\\&\quad =tr\big \{\prod _{l=1}^k\big (g_{i_{\sigma (u_1)}i_{\sigma (k+1)}}^{-1}g_{i_{\sigma (l)} i_{\sigma (u_1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (u_1)}}g_{i_{\sigma (u_1)}i_{\sigma (k+1)}}\\&\qquad +g_{i_{\sigma (u_1)} i_{\sigma (k+1)}}^{-1}dg_{i_{\sigma (u_1)} i_{\sigma (k+1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (g_{i_{\sigma (u_1)}i_{\sigma (k+1)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (u_1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (u_1)}}g_{i_{\sigma (u_1)}i_{\sigma (k+1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}\\&\quad =tr\big \{\prod _{l=1}^k\big (g_{i_{\sigma (l)} i_{\sigma (u_1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (u_1)}}+(-1)\cdot g_{i_{\sigma (u_1)} i_{\sigma (k+1)}}dg_{i_{\sigma (u_1)} i_{\sigma (k+1)}}^{-1}\big )^{1-\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (g_{i_{\sigma (l)}i_{\sigma (u_1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (u_1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}\\&\quad =\sum _{\begin{array}{c} 0\le l\le k-j\,; \\ 1\le x_1<\cdots <x_l\le k\,;\\ u_1,\ldots ,u_j,x_1,\ldots ,x_l\, {\text {are distinct}} \end{array}}\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}). \end{aligned} \end{aligned}$$
(162)

Then,

$$\begin{aligned} \begin{aligned} I_4&=\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\sum _{\begin{array}{c} j\ge 1; \\ 1\le u_1<u_2<\cdots<u_j\le k;\, \end{array}}\sum _{\begin{array}{c} 0\le l\le k-j\,; \\ 1\le x_1<\cdots<x_l\le k\,;\\ u_1,\ldots ,u_j,x_1,\ldots ,x_l\, {\text {are distinct}} \end{array}}\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&=\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k\,; \\ 1\le u_1<u_2<\cdots<u_j\le k\, \end{array}}\Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<u_2<\cdots<u_j\le k;\\ 1\le x_1\le k,\,x_1\notin \{u_1,\ldots ,u_j\} \end{array}}\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k-2\,; \\ 1\le u_1<u_2<\cdots<u_j\le k\, \end{array}}\sum _{\begin{array}{c} 2\le l\le k-j\,; \\ 1\le x_1<\cdots <x_l\le k\,;\\ u_1,\ldots ,u_j,x_1,\ldots ,x_l\, {\text {are distinct}} \end{array}}\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&=:J_1+J_2+J_3. \end{aligned} \end{aligned}$$
(163)

Interchanging the order of summation, we have that

$$\begin{aligned} \begin{aligned} J_3&=\sum _{\begin{array}{c} 1\le j\le k-2\,; \\ 1\le u_1<u_2<\cdots<u_j\le k\, \end{array}}\sum _{\begin{array}{c} 2\le l\le k-j\,; \\ 1\le x_1<\cdots <x_l\le k\,;\\ u_1,\ldots ,u_j,x_1,\ldots ,x_l\, {\text {are distinct}} \end{array}}\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\ \end{aligned} \end{aligned}$$
(164)

Hence, it suffices to prove that for integers jl such that \(1\le j\), \(2\le l\le k-j\), and distinct integers \(u_1,\ldots ,u_j,x_1,\ldots ,x_l\in \{1,\ldots ,k\}\), the following equality holds,

$$\begin{aligned} \sum _{\sigma \in S_{k+1}}sgn(\sigma )\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\equiv 0. \end{aligned}$$
(165)

We shall prove equality (165) in the same way as the proof of Claim I of Lemma 2.4. Denote by \(\tau \) the permutation \((x_1,x_2)\in S_{k+1}\). Then,

$$\begin{aligned} \begin{aligned}&\Delta ^{\sigma \circ \tau }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})=tr\big \{\prod _{l=1}^k\big (g_{i_{(\sigma \circ \tau )(l)} i_{(\sigma \circ \tau )(u_1)}}^{-1}dg_{i_{(\sigma \circ \tau )(l)} i_{(\sigma \circ \tau )(u_1)}}\big )^{1-\delta _{x_1\cdots x_{l}}(l)-\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (-g_{i_{(\sigma \circ \tau )(u_1)} i_{(\sigma \circ \tau )(k+1)}}dg_{i_{(\sigma \circ \tau )(u_1)} i_{(\sigma \circ \tau )(k+1)}}^{-1}\big )^{\delta _{x_1\cdots x_{l}}(l)}\cdot \\&\qquad \cdot \big (g_{i_{(\sigma \circ \tau )(l)}i_{(\sigma \circ \tau )(u_1)}}^{-1}h_{i_{(\sigma \circ \tau )(l)}}dh_{i_{(\sigma \circ \tau )(l)}}^{-1}g_{i_{(\sigma \circ \tau )(l)}i_{(\sigma \circ \tau )(u_1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}\\&\quad =tr\big \{\prod _{l=1}^k\big (g_{i_{\sigma (l)} i_{\sigma (u_1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (u_1)}}\big )^{1-\delta _{x_1\cdots x_l}(l)-\delta _{u_1\cdots u_j}(l)}\cdot \\&\qquad \cdot \big (-g_{i_{\sigma (u_1)} i_{\sigma (k+1)}}dg_{i_{\sigma (u_1)} i_{\sigma (k+1)}}^{-1}\big )^{\delta _{x_1\cdots x_l}(l)}\big (g_{i_{\sigma (l)}i_{\sigma (u_1)}}^{-1}h_{i_{\sigma (l)}}dh_{i_{\sigma (l)}}^{-1}g_{i_{\sigma (l)}i_{\sigma (u_1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}\\&\quad =\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}). \end{aligned} \end{aligned}$$
(166)

Therefore, we have that

$$\begin{aligned} \begin{aligned} \sum _{\sigma \in S_{k+1}}&sgn(\sigma )\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})=\sum _{\sigma \circ \tau \in S_{k+1}}sgn(\sigma \circ \tau )\cdot \Delta ^{\sigma \circ \tau }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&=sgn(\tau )\cdot \sum _{\sigma \in S_{k+1}}sgn(\sigma )\cdot \Delta ^{\sigma \circ \tau }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&=-\sum _{\sigma \in S_{k+1}}sgn(\sigma )\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1\cdots x_{l})}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}).\\ \end{aligned} \end{aligned}$$
(167)

We complete the proof of Claim II. \(\square \)

We now construct a Čech \((k-1)\)-cochain s as follows. For \(i_1,i_2,\ldots ,i_{k+1}\in I\) and \(1\le \alpha \le k+1\), define

$$\begin{aligned}{} & {} s_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+1};\,i_1\cdots i_{k+1}}\nonumber \\{} & {} \quad :=\frac{(-1)^{\alpha -1}}{(k+1)!} \sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<\cdots<u_j\le k\,;\\ 1\le v_1\le k\,;\\ u_1,\ldots ,u_j,v_1\, {\text {are distinct}} \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (v_1)=\alpha \end{array}}sgn(\sigma )\cdot \Delta ^{\sigma }_{u_1\cdots u_j,v_{1}} ({{\widetilde{t}}}_{i_1\cdots i_{k+1}}) \nonumber \\{} & {} \qquad +\frac{(-1)^{\alpha -1}}{(k+1)!} \sum _{\begin{array}{c} 1\le v_1\le k \end{array}}\,\,\,\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (v_1)=\alpha \end{array}} {sgn(\sigma )}\cdot \Delta ^{\sigma }_{\emptyset ,v_{1}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}) \nonumber \\{} & {} \qquad +\frac{(-1)^{\alpha -1}}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k\,; \\ 1\le u_1<u_2<\cdots<u_j\le k; \end{array}} \sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (k+1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\, \emptyset )}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}) \nonumber \\{} & {} \qquad +\frac{(-1)^{\alpha -1}}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<u_2<\cdots <u_j\le k; \nonumber \\ 1\le x_1\le k,\, x_1\notin \{u_1,\ldots ,u_j\} \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (x_1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}).\\ \end{aligned}$$
(168)

Claim III. The above definition depends on \((i_1,\ldots ,\widehat{i_{\alpha }},\ldots ,i_{k+1})\) but not on \((i_1,\ldots ,i_{k+1})\); namely, if \((i_1,\ldots ,\widehat{i_{\alpha }},\ldots ,i_{k+1})=(j_1,\ldots ,\widehat{j_{\beta }},\ldots ,j_{k+1})\), \(s_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+1};\,i_1\cdots i_{k+1}}=s_{j_1\cdots \widehat{j_\beta }\cdots j_{k+1};\,j_1\cdots j_{k+1}}\).

Proof of Claim III. For any integers \(\alpha \), \(\beta \) and \(i_1,\ldots , i_{k+2}\) such that \(1\le \alpha <\beta \le k+2\) and \(i_1,i_2,\ldots ,i_{k+1}\in I\), we can define \(s_{i_1\cdots \widehat{i_\alpha }\cdots \widehat{i_\beta }\cdots i_{k+1};\,i_1\cdots \widehat{i_\beta }\cdots i_{k+2}}\) and \(s_{i_1\cdots \widehat{i_\alpha }\cdots \widehat{i_\beta }\cdots i_{k+1};\,i_1\cdots \widehat{i_{\alpha }}\cdots i_{k+2}}\) by (168). Firstly, we have

$$\begin{aligned} \begin{aligned}&s_{i_1\cdots \widehat{i_\alpha }\cdots \widehat{i_\beta }\cdots i_{k+1};\,i_1\cdots \widehat{i_\beta }\cdots i_{k+2}}\\&\quad =\frac{(-1)^{\alpha -1}}{(k+1)!} \sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<\cdots<u_j\le k\,;\\ 1\le v_1\le k\,;\\ u_1,\ldots ,u_j,v_1\, {\text {are distinct}} \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (v_1)=\alpha \end{array}}sgn(\sigma )\cdot \Delta ^{\sigma }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})\\&\qquad +\frac{(-1)^{\alpha -1}}{(k+1)!} \sum _{\begin{array}{c} j=0\,; \\ 1\le v_1\le k\,; \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (v_1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{\emptyset ,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})\\&\qquad +\frac{(-1)^{\alpha -1}}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k\,; \\ 1\le u_1<u_2<\cdots<u_j\le k; \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (k+1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})\\&\qquad +\frac{(-1)^{\alpha -1}}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<u_2<\cdots <u_j\le k;\\ 1\le x_1\le k,\, x_1\notin \{u_1,\ldots ,u_j\} \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (x_1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})\\&\quad =:\kappa ^{\alpha }_1+\kappa ^{\alpha }_2+\kappa ^{\alpha }_3+\kappa ^{\alpha }_4. \end{aligned} \end{aligned}$$
(169)

Notice that in the definition of \(s_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+1};\,i_1\cdots i_{k+1}}\), the number \(\alpha \) on the right hand side is referring to the position of the omitted index on the left hand side. Therefore, \(s_{i_1\cdots \widehat{i_\alpha }\cdots \widehat{i_\beta }\cdots i_{k+1};\,i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}\) takes the following form,

$$\begin{aligned}{} & {} s_{i_1\cdots \widehat{i_\alpha }\cdots \widehat{i_\beta }\cdots i_{k+1};\,i_1\cdots \widehat{i_{\alpha }}\cdots i_{k+2}} \nonumber \\{} & {} \quad =\frac{(-1)^{\beta -2}}{(k+1)!} \sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<\cdots<u_j\le k\,;\\ 1\le v_1\le k\,;\\ u_1,\ldots ,u_j,v_1\, {\text {are distinct}} \end{array}}\sum _{\begin{array}{c} \tau \in S_{k+1},\\ \tau (v_1)=\beta -1 \end{array}}sgn(\tau )\cdot \Delta ^{\tau }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}) \nonumber \\{} & {} \qquad +\frac{(-1)^{\beta -2}}{(k+1)!} \sum _{\begin{array}{c} j=0\,; \\ 1\le v_1\le k\,; \end{array}}\sum _{\begin{array}{c} \tau \in S_{k+1},\\ \tau (v_1)=\beta -1 \end{array}}{sgn(\tau )}\cdot \Delta ^{\tau }_{\emptyset ,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}})\nonumber \\{} & {} \qquad +\frac{(-1)^{\beta -2}}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k\,; \\ 1\le u_1<u_2<\cdots<u_j\le k; \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (k+1)=\beta -1 \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}) \nonumber \\{} & {} \qquad +\frac{(-1)^{\beta -2}}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<u_2<\cdots <u_j\le k;\\ 1\le x_1\le k,\, x_1\notin \{u_1,\ldots ,u_j\} \end{array}}\sum _{\begin{array}{c} \tau \in S_{k+1},\\ \tau (x_1)=\beta -1 \end{array}}{sgn(\tau )}\cdot \Delta ^{\tau }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}) \nonumber \\{} & {} \quad =: \kappa ^{\beta }_1+\kappa ^{\beta }_2+\kappa ^{\beta }_3+\kappa ^{\beta }_4. \end{aligned}$$
(170)

In order to prove Claim III, it suffices to prove that

$$\begin{aligned} s_{i_1\cdots \widehat{i_\alpha }\cdots \widehat{i_\beta }\cdots i_{k+1};\,i_1\cdots \widehat{i_\beta }\cdots i_{k+2}}=s_{i_1\cdots \widehat{i_\alpha }\cdots \widehat{i_\beta }\cdots i_{k+1};\,i_1\cdots \widehat{i_{\alpha }}\cdots i_{k+2}}. \end{aligned}$$
(171)

By Claim IV to be proved in the following, formula (171) holds. We complete the proof of Claim III. \(\square \)

Next we will prove Claim IV used above.

Claim IV.

$$\begin{aligned} \kappa ^{\alpha }_i=(-1)^{\alpha -\beta +1}\cdot \kappa ^{\beta }_i\,\,\,\,\,\textrm{for}\,\,\,\, i=1,2,3,4. \end{aligned}$$
(172)

Proof of Claim IV. We will prove Claim IV based on a case by case argument.

Case I (\(\kappa ^{\alpha }_1=(-1)^{\alpha -\beta +1}\cdot \kappa ^{\beta }_1\)). It suffices to prove that for fixed integer j such that \(1\le j\le k-1\), and distinct integers \(u_1,\ldots ,u_j,v_1\in \{1,\ldots ,k\}\), the following equality holds,

$$\begin{aligned}{} & {} \sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (v_1)=\alpha \end{array}}sgn(\sigma )\cdot \Delta ^{\sigma }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=(-1)^{\alpha -\beta +1}\nonumber \\{} & {} \quad \cdot \sum _{\begin{array}{c} \tau \in S_{k+1},\\ \tau (v_1)=\beta -1 \end{array}}sgn(\tau )\cdot \Delta ^{\tau }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}). \end{aligned}$$
(173)

In order to compare the terms on both sides, we lift each element of \(S_{k+1}\) to an element of \(S_{k+2}\) as follows. Denote by \(S_{k+1}^{\beta }\) the set consisting of all bijections from \(\{1,2,\ldots ,k+1\}\) to \(\{1,\ldots ,{{\widehat{\beta }}}, \cdots ,k+2\}\); denote by \(S_{k+1}^{\alpha }\) the set consisting of all bijections from \(\{1,2,\ldots ,k+1\}\) to \(\{1,\ldots ,{{\widehat{\alpha }}}, \cdots ,k+2\}\). Define a bijection

$$\begin{aligned} \begin{aligned} {{\widehat{\bullet }}}\quad :\quad S_{k+1}&\longrightarrow S_{k+1}^{\beta } \\ \sigma&\longmapsto {\widehat{\sigma }} \end{aligned} \end{aligned}$$
(174)

by

$$\begin{aligned} {{\widehat{\sigma }}}(l)=\left\{ \begin{array}{ccc} \sigma (l)&{} \qquad \textrm{if}&{}\qquad 1\le l\le k+1 \quad \textrm{and} \quad \sigma (l)< \beta ,\\ \sigma (l)+1&{}\qquad \textrm{if}&{}\qquad 1\le l\le k+1\quad \textrm{and}\quad \sigma (l)\ge \beta .\\ \end{array}\right. \end{aligned}$$
(175)

Moreover, to compare the signature, we define a bijection

$$\begin{aligned} \begin{aligned}{}[\bullet ]_{\beta }\quad :\quad S^{\beta }_{k+1}&\longrightarrow \big \{\eta \big |\eta \in S_{k+2},\eta (k+2)=\beta \big \} \\ {{\widehat{\sigma }}}&\longmapsto [{{\widehat{\sigma }}}]_{\beta } \end{aligned} \end{aligned}$$
(176)

by

$$\begin{aligned}{}[{{\widehat{\sigma }}}]_{\beta }(l)=\left\{ \begin{array}{ccc} {{\widehat{\sigma }}}(l)&{}\qquad \textrm{if}&{}\quad 1\le l\le k+1,\\ \beta &{}\qquad \textrm{if}&{} \qquad l=k+2;\\ \end{array}\right. \end{aligned}$$
(177)

then, the following equality holds,

$$\begin{aligned} sgn(\sigma )=(-1)^{k+2-\beta }\cdot sgn([{{\widehat{\sigma }}}]_{\beta }). \end{aligned}$$
(178)

Similarly, we can define a bijection

$$\begin{aligned} \begin{aligned} {{\overline{\bullet }}}\quad :\quad S_{k+1}&\longrightarrow S_{k+1}^{\alpha } \\ \tau&\longmapsto {\overline{\tau }} \end{aligned} \end{aligned}$$
(179)

by

$$\begin{aligned} {{\overline{\tau }}}(l)=\left\{ \begin{array}{ccc} \tau (l)&{}\qquad \textrm{if}&{}\qquad 1\le l\le k+1\quad \textrm{and}\quad \tau (l)< \alpha ,\\ \tau (l)+1&{}\qquad \textrm{if}&{}\qquad 1\le l\le k+1\quad \textrm{and}\quad \tau (l)\ge \alpha ;\\ \end{array}\right. \end{aligned}$$
(180)

define a bijection

$$\begin{aligned} \begin{aligned}{}[\bullet ]_{\alpha }\quad :\quad S^{\alpha }_{k+1}&\longrightarrow \big \{\eta \big |\eta \in S_{k+2},\eta (k+2)=\alpha \big \} \\ {{\overline{\tau }}}&\longmapsto [{{\overline{\tau }}}]_{\alpha } \end{aligned} \end{aligned}$$
(181)

by

$$\begin{aligned}{}[{{\overline{\tau }}}]_{\alpha }(l)=\left\{ \begin{array}{ccc} {{\overline{\tau }}}(l)&{}\qquad \textrm{if}&{}\qquad 1\le l\le k+1,\\ \alpha &{}\qquad \textrm{if}&{}\qquad l=k+2,\\ \end{array}\right. \end{aligned}$$
(182)

the following equality holds,

$$\begin{aligned} sgn(\tau )=(-1)^{k+2-\alpha }\cdot sgn([{{\overline{\tau }}}]_{\alpha }). \end{aligned}$$
(183)

Rewriting (153) under the above notation, we have

$$\begin{aligned} \begin{aligned} \Delta ^{\sigma }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})&=tr\big \{\prod _{l=1}^k\big (g_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(k+1)}}^{-1}dg_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(k+1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)-\delta _{v_1}(l)}\\&\quad \cdot \big (g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(k+1)}}^{-1}h_{i_{{{\widehat{\sigma }}}(l)}}dh_{i_{{{\widehat{\sigma }}}(l)}}^{-1}g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(k+1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\\&\quad \cdot \big (-h_{i_{{{\widehat{\sigma }}}(k+1)}}dh_{i_{{{\widehat{\sigma }}}(k+1)}}^{-1}\big )^{\delta _{v_1}(l)}\big \}, \end{aligned} \end{aligned}$$
(184)

and

$$\begin{aligned} \begin{aligned} \Delta ^{\tau }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}})&=tr\big \{\prod _{l=1}^k\big (g_{i_{{{\overline{\tau }}}(l)} i_{{{\overline{\tau }}}(k+1)}}^{-1}dg_{i_{{{\overline{\tau }}}(l)} i_{{{\overline{\tau }}}(k+1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)-\delta _{v_1}(l)}\\&\quad \cdot \big (g_{i_{{{\overline{\tau }}}(l)}i_{{{\overline{\tau }}}(k+1)}}^{-1}h_{i_{{{\overline{\tau }}}(l)}}dh_{i_{{{\overline{\tau }}}(l)}}^{-1}g_{i_{{{\overline{\tau }}}(l)}i_{{{\overline{\tau }}}(k+1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\\&\quad \cdot \big (-h_{i_{{{\overline{\tau }}}(k+1)}}dh_{i_{{{\overline{\tau }}}(k+1)}}^{-1}\big )^{\delta _{v_1}(l)}\big \}. \end{aligned} \end{aligned}$$
(185)

In order to prove equality (173), it suffices to construct a bijection

$$\begin{aligned} \begin{aligned} P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}:\{\sigma \in S_{k+1}\big |\sigma (v_1)=\alpha \}\longrightarrow \{\tau \in S_{k+1}\big |\tau (v_1)=\beta -1\}, \end{aligned}\nonumber \\ \end{aligned}$$
(186)

such that

$$\begin{aligned} \begin{aligned}&sgn(\sigma )\cdot \Delta ^{\sigma }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=\\&\qquad (-1)^{\alpha -\beta +1}\cdot sgn(P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}(\sigma ))\cdot \Delta ^{P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}(\sigma )}_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}). \end{aligned} \end{aligned}$$
(187)

For each \(\sigma \in S_{k+1}\) such that \(\sigma (v_1)=\alpha \), we define \(P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}({\sigma })\) as follows. Take \({{\widehat{\sigma }}}\) as in (175) and define \(\eta \in S_{k+1}^{\alpha }\) by

$$\begin{aligned} \eta (l)=\left\{ \begin{array}{ccc} {{\widehat{\sigma }}}(l)&{}\qquad \textrm{if}&{}\qquad 1\le l\le v_1-1,\\ \beta &{}\qquad \textrm{if}&{}\qquad l=v_1,\\ {{\widehat{\sigma }}}(l)&{}\qquad \textrm{if}&{} \qquad v_1+1\le l\le k+1;\\ \end{array}\right. \end{aligned}$$
(188)

let \(P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}({\sigma })\) be the inverse image of \(\eta \) under the bijection \({\overline{\bullet }}\)  , that is, \(\overline{P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}({\sigma })}=\eta \). It is easy to verify that \(P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}({\sigma })\in \{\tau \in S_{k+1}\big |\tau (v_1)=\beta -1\}\).

Then, by (184) and (185), we have

$$\begin{aligned} \begin{aligned}&\Delta ^{P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}({\sigma })}_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}})=tr\big \{\prod _{l=1}^k\big (g_{i_{\eta (l)} i_{\eta (k+1)}}^{-1}dg_{i_{\eta (l)} i_{\eta (k+1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)-\delta _{v_1}(l)}\\&\qquad \cdot \big (g_{i_{\eta (l)}i_{\eta (k+1)}}^{-1}h_{i_{\eta (l)}}dh_{i_{\eta (l)}}^{-1}g_{i_{\eta (l)}i_{\eta (k+1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\cdot \big (-h_{i_{\eta (k+1)}}dh_{i_{\eta (k+1)}}^{-1}\big )^{\delta _{v_1}(l)}\big \}\\&\quad =tr\big \{\prod _{l=1}^k\big (g_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(k+1)}}^{-1}dg_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(k+1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)-\delta _{v_1}(l)}\cdot \big (g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(k+1)}}^{-1}h_{i_{{{\widehat{\sigma }}}(l)}}dh_{i_{{{\widehat{\sigma }}}(l)}}^{-1}g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(k+1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (-h_{i_{{{\widehat{\sigma }}}(k+1)}}dh_{i_{{{\widehat{\sigma }}}(k+1)}}^{-1}\big )^{\delta _{v_1}(l)}\big \}=\Delta ^{\sigma }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}}). \end{aligned} \end{aligned}$$
(189)

To complete the proof of Claim IV in this case, it suffices to prove the following equality,

$$\begin{aligned} sgn(P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}({\sigma }))=(-1)^{\alpha -\beta +1}\cdot sgn(\sigma ). \end{aligned}$$
(190)

Since

$$\begin{aligned}{} & {} sgn(P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}({\sigma }))=(-1)^{k+2-\alpha }\cdot sgn([\overline{P_{\alpha ,\beta ,u_1,\ldots ,u_j,v_1}({\sigma })}]_{\alpha })\nonumber \\{} & {} \quad =(-1)^{k+2-\alpha }\cdot sgn([\eta ]_{\alpha }) \end{aligned}$$
(191)

and

$$\begin{aligned} (-1)^{\alpha -\beta +1}\cdot sgn(\sigma )=(-1)^{\alpha -\beta +1}\cdot (-1)^{k+2-\beta }\cdot sgn([\sigma ]_{\beta }), \end{aligned}$$
(192)

it suffices to prove that

$$\begin{aligned} sgn([\eta ]_{\alpha })=-sgn([\sigma ]_{\beta }). \end{aligned}$$
(193)

Since \([\eta ]_{\alpha }=\iota \circ [\sigma ]_{\beta }\in S_{k+2}\) where \(\iota \in S_{k+2}\) is the permutation \((\alpha ,\beta )\), equality (193) holds.

Therefore, \(\kappa ^{\alpha }_1=(-1)^{\alpha -\beta +1}\cdot \kappa ^{\beta }_1\).

Case II (\(\kappa ^{\alpha }_2=(-1)^{\alpha -\beta +1}\cdot \kappa ^{\beta }_2\)). Similarly, it suffices to prove that for fixed integer \(v_1\) such that \(1\le v_1\le k\) the following equality holds:

$$\begin{aligned} \sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (v_1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{\emptyset ,v_{1}}(\widetilde{t}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=(-1)^{\alpha -\beta +1}\cdot \sum _{\begin{array}{c} \tau \in S_{k+1},\\ \tau (v_1)=\beta -1 \end{array}}{sgn(\tau )}\cdot \Delta ^{\tau }_{\emptyset ,v_{1}}(\widetilde{t}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}).\nonumber \\ \end{aligned}$$
(194)

Define \({{\widehat{\sigma }}}\), \([{{\widehat{\sigma }}}]_{\beta }\), \({{\overline{\tau }}}\) and \([{{\overline{\tau }}}]_{\alpha }\) in the same way as (175), (177), (180) and (182). Rewriting (184) under the above notation, we have

$$\begin{aligned} \begin{aligned} \Delta ^{\sigma }_{\emptyset ,v_{1}}&(\widetilde{t}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=tr\big \{\prod _{l=1}^k\big (g_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(k+1)}}^{-1}dg_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(k+1)}}\big )^{1-\delta _{v_1}(l)}\cdot \big (-h_{i_{{{\widehat{\sigma }}}(k+1)}}dh_{i_{{{\widehat{\sigma }}}(k+1)}}^{-1}\big )^{\delta _{v_1}(l)}\big \}, \end{aligned} \end{aligned}$$
(195)

and

$$\begin{aligned} \begin{aligned} \Delta ^{\tau }_{\emptyset ,v_{1}}&(\widetilde{t}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}})=tr\big \{\prod _{l=1}^k\big (g_{i_{{{\overline{\tau }}}(l)} i_{{{\overline{\tau }}}(k+1)}}^{-1}dg_{i_{{{\overline{\tau }}}(l)} i_{{{\overline{\tau }}}(k+1)}}\big )^{1-\delta _{v_1}(l)}\cdot \big (-h_{i_{{{\overline{\tau }}}(k+1)}}dh_{i_{{{\overline{\tau }}}(k+1)}}^{-1}\big )^{\delta _{v_1}(l)}\big \}. \end{aligned} \end{aligned}$$
(196)

Notice that equality (194) holds if there exists a bijection

$$\begin{aligned} \begin{aligned} P_{\alpha ,\beta ,v_1}:\{\sigma \in S_{k+1}\big |\sigma (v_1)=\alpha \}\rightarrow \{\tau \in S_{k+1}\big |\tau (v_1)=\beta -1\}, \end{aligned} \end{aligned}$$
(197)

such that

$$\begin{aligned} sgn(\sigma )\cdot \Delta ^{\sigma }_{\emptyset ,v_{1}}(\widetilde{t}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}}) \!=\! (-1)^{\alpha -\beta +1}\cdot sgn(P_{\alpha ,\beta ,v_1}(\sigma ))\cdot \Delta ^{P_{\alpha ,\beta ,v_1}(\sigma )}_{\emptyset ,v_{1}}(\widetilde{t}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}).\qquad \end{aligned}$$
(198)

For each \(\sigma \in S_{k+1}\) such that \(\sigma (v_1)=\alpha \), we define an element \(P_{\alpha ,\beta ,v_1}({\sigma })\in S_{k+1}\) as follows. Take \({{\widehat{\sigma }}}\) as in (175) and define \(\eta \in S_{k+1}^{\alpha }\) by

$$\begin{aligned} \eta (l)=\left\{ \begin{array}{ccc} {{\widehat{\sigma }}}(l)&{}\qquad \textrm{if}&{}\qquad 1\le l\le v_1-1,\\ \beta &{}\qquad \textrm{if}&{}\qquad l=v_1,\\ {{\widehat{\sigma }}}(l)&{}\qquad \textrm{if}&{}\qquad v_1+1\le l\le k+1;\\ \end{array}\right. \end{aligned}$$
(199)

let \(P_{\alpha ,\beta ,v_1}({\sigma })\) be the inverse image of \(\eta \) under the map \({\overline{\bullet }}\)  , that is, \(\overline{P_{\alpha ,\beta ,v_1}({\sigma })}=\eta \). It is easy to verify that \(P_{\alpha ,\beta ,v_1}({\sigma })\in \{\tau \in S_{k+1}\big |\tau (v_1)=\beta -1\}\).

Then, by (184) and (185), we have that

$$\begin{aligned} \begin{aligned}&\Delta ^{P_{\alpha ,\beta ,v_1}({\sigma })}_{\emptyset ,v_{1}}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}})\\&\quad =tr\big \{\prod _{l=1}^k\big (g_{i_{\eta (l)} i_{\eta (k+1)}}^{-1}dg_{i_{\eta (l)} i_{\eta (k+1)}}\big )^{1-\delta _{v_1}(l)}\cdot \big ((-1)\cdot h_{i_{\eta (k+1)}}dh_{i_{\eta (k+1)}}^{-1}\big )^{\delta _{v_1}(l)}\big \}\\&\quad =tr\big \{\prod _{l=1}^k\big (g_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(k+1)}}^{-1}dg_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(k+1)}}\big )^{1-\delta _{v_1}(l)}\cdot \big ((-1)\cdot h_{i_{{{\widehat{\sigma }}}(k+1)}}dh_{i_{{{\widehat{\sigma }}}(k+1)}}^{-1}\big )^{\delta _{v_1}(l)}\big \}\\&\quad =\Delta ^{\sigma }_{\emptyset ,v_{1}}(\widetilde{t}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}}). \end{aligned} \end{aligned}$$
(200)

Notice that

$$\begin{aligned}{} & {} sgn(P_{\alpha ,\beta ,v_1}({\sigma }))=(-1)^{k+2-\alpha }\cdot sgn([\overline{P_{\alpha ,\beta ,v_1}({\sigma })}]_{\alpha })=(-1)^{k+2-\alpha }\cdot sgn([\eta ]_{\alpha }),\nonumber \\\end{aligned}$$
(201)
$$\begin{aligned}{} & {} (-1)^{\alpha -\beta +1}\cdot sgn(\sigma )=(-1)^{\alpha -\beta +1}\cdot (-1)^{k+2-\beta }\cdot sgn([{{\widehat{\sigma }}}]_{\beta }). \end{aligned}$$
(202)

Since \([\eta ]_{\alpha }=\iota \circ [{{\widehat{\sigma }}}]_{\beta }\in S_{k+2}\) where \(\iota \in S_{k+2}\) is the permutation \((\alpha ,\beta )\), \(sgn([\sigma ]_{\beta })=-sgn([\eta ]_{\alpha })\).

Then, \(\kappa ^{\alpha }_2=(-1)^{\alpha -\beta +1}\cdot \kappa ^{\beta }_2\).

Case III (\(\kappa ^{\alpha }_3=(-1)^{\alpha -\beta +1}\cdot \kappa ^{\beta }_3\)). Similarly we will show that for fixed integers \(j,u_1,\ldots ,u_j\) such that \(1\le j\le k\) and \(1\le u_1<\cdots <u_j\le k\), the following equality holds:

$$\begin{aligned}{} & {} \sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (k+1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=(-1)^{\alpha -\beta +1}\nonumber \\{} & {} \cdot \sum _{\begin{array}{c} \tau \in S_{k+1},\\ \tau (k+1)=\beta -1 \end{array}}{sgn(\tau )}\cdot \Delta ^{\tau }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}). \end{aligned}$$
(203)

Define \({{\widehat{\sigma }}}\), \([{{\widehat{\sigma }}}]_{\beta }\), \({{\overline{\tau }}}\) and \([{{\overline{\tau }}}]_{\alpha }\) in the same way as (175), (177), (180) and (182). Rewriting (159) under the new notation, we have

$$\begin{aligned} \begin{aligned}&\Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}(\widetilde{t}_{i_1\cdots {{\widehat{i}}}_{\beta }\cdots i_{k+1}})=tr\big \{\prod _{l=1}^k\big (g_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(u_1)}}^{-1}dg_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(u_1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)}\\&\quad \cdot \big (g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(u_1)}}^{-1}h_{i_{{{\widehat{\sigma }}}(l)}}dh_{i_{{{\widehat{\sigma }}}(l)}}^{-1}g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(u_1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}, \end{aligned} \end{aligned}$$
(204)

and

$$\begin{aligned} \begin{aligned}&\Delta ^{\tau }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots {{\widehat{i}}}_{\alpha }\cdots i_{k+1}})=tr\big \{\prod _{l=1}^k\big (g_{i_{{{\overline{\tau }}}(l)} i_{{{\overline{\tau }}}(u_1)}}^{-1}dg_{i_{{{\overline{\tau }}}(l)} i_{{{\overline{\tau }}}(u_1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)}\\&\quad \cdot \big (g_{i_{{{\overline{\tau }}}(l)}i_{{{\overline{\tau }}}(u_1)}}^{-1}h_{i_{{{\overline{\tau }}}(l)}}dh_{i_{{{\overline{\tau }}}(l)}}^{-1}g_{i_{{{\overline{\tau }}}(l)}i_{{{\overline{\tau }}}(u_1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}. \end{aligned} \end{aligned}$$
(205)

Notice that equality (203) holds if there exists a bijection

$$\begin{aligned} \begin{aligned} P_{\alpha ,\beta }:\{\sigma \in S_{k+1}\big |\sigma (k+1)=\alpha \}\rightarrow \{\tau \in S_{k+1}\big |\tau (k+1)=\beta -1\}, \end{aligned} \end{aligned}$$
(206)

such that

$$\begin{aligned} {sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=(-1)^{\alpha -\beta +1}\cdot {sgn(P_{\alpha ,\beta }(\sigma ))}\cdot \Delta ^{P_{\alpha ,\beta }(\sigma )}_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}).\nonumber \\ \end{aligned}$$
(207)

For each \(\sigma \in S_{k+1}\) such that \(\sigma (k+1)=\alpha \), we define an element \(P_{\alpha ,\beta }({\sigma })\in S_{k+1}\) as follows. Take \({{\widehat{\sigma }}}\) as in (175) and define \(\eta \in S_{k+1}^{\alpha }\) by

$$\begin{aligned} \eta (l)=\left\{ \begin{array}{ccc} {{\widehat{\sigma }}}(l)&{}\qquad \textrm{if}&{}\qquad 1\le l\le k,\\ \beta &{}\qquad \textrm{if}&{}\qquad l=k+1; \end{array}\right. \end{aligned}$$
(208)

let \(P_{\alpha ,\beta }({\sigma })\) be the inverse image of \(\eta \) under the map \({\overline{\bullet }}\)  , that is, \(\overline{P_{\alpha ,\beta }({\sigma })}=\eta \). It is easy to verify that \(P_{\alpha ,\beta }({\sigma })\in \{\tau \in S_{k+1}\big |\tau (k+1)=\beta -1\}\).

Then, by (159), we have that

$$\begin{aligned} \begin{aligned}&\Delta ^{P_{\alpha ,\beta }({\sigma })}_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}})=tr\big \{\prod _{l=1}^k\big (g_{i_{\eta (l)} i_{\eta (u_1)}}^{-1}dg_{i_{\eta (l)} i_{\eta (u_1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (g_{i_{\eta (l)}i_{\eta (u_1)}}^{-1}h_{i_{\eta (l)}}dh_{i_{\eta (l)}}^{-1}g_{i_{\eta (l)}i_{\eta (u_1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}\\&\quad =tr\big \{\prod _{l=1}^k\big (g_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(u_1)}}^{-1}dg_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(u_1)}}\big )^{1-\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(u_1)}}^{-1}h_{i_{{{\widehat{\sigma }}}(l)}}dh_{i_{{{\widehat{\sigma }}}(l)}}^{-1}g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(u_1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}\\&\quad =\Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}(\widetilde{t}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}}). \end{aligned} \end{aligned}$$
(209)

Since

$$\begin{aligned} sgn(P_{\alpha ,\beta }({\sigma }))=(-1)^{k+2-\alpha }\cdot sgn([\overline{P_{\alpha ,\beta }({\sigma })}]_{\alpha })=(-1)^{k+2-\alpha }\cdot sgn([\eta ]_{\alpha }) \nonumber \\ \end{aligned}$$
(210)

and

$$\begin{aligned} (-1)^{\alpha -\beta +1}\cdot sgn(\sigma )=(-1)^{\alpha -\beta +1}\cdot (-1)^{k+2-\beta }\cdot sgn([{{\widehat{\sigma }}}]_{\beta }), \end{aligned}$$
(211)

it suffices to prove that

$$\begin{aligned} sgn([\eta ]_{\alpha })=-sgn([{{\widehat{\sigma }}}]_{\beta }). \end{aligned}$$
(212)

Noticing that \([\eta ]_{\alpha }=\iota \circ [{{\widehat{\sigma }}}]_{\beta }\in S_{k+2}\) where \(\iota \in S_{k+2}\) is the permutation \((\alpha ,\beta )\), (212) holds.

Therefore, \(\kappa ^{\alpha }_3=(-1)^{\alpha -\beta +1}\cdot \kappa ^{\beta }_3\).

Case IV (\(\kappa ^{\alpha }_4=(-1)^{\alpha -\beta +1}\cdot \kappa ^{\beta }_4\)). Finally we will prove that for fixed integer j such that \(1\le j\le k-1\), and distinct integers \(u_1,\ldots ,u_j,x_1\in \{1,\ldots ,k\}\), the following equality holds:

$$\begin{aligned} \begin{aligned}&\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (x_1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=(-1)^{\alpha -\beta +1}\\&\quad \cdot \sum _{\begin{array}{c} \tau \in S_{k+1},\\ \tau (x_1)=\beta -1 \end{array}}{sgn(\tau )}\cdot \Delta ^{\tau }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}). \end{aligned} \end{aligned}$$
(213)

It suffices to prove that there exists a bijection

$$\begin{aligned} \begin{aligned} P_{\alpha ,\beta ,u_1\cdots u_j,x_1}:\{\sigma \in S_{k+1}\big |\sigma (x_1)=\alpha \}\rightarrow \{\tau \in S_{k+1}\big |\tau (x_1)=\beta -1\}, \end{aligned} \end{aligned}$$
(214)

such that

$$\begin{aligned}&{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}(\widetilde{t}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=(-1)^{\alpha -\beta +1}\cdot {sgn(P_{\alpha ,\beta ,u_1\cdots u_j,x_1}({\sigma }))}\nonumber \\&\quad \cdot \Delta ^{P_{\alpha ,\beta ,u_1\cdots u_j,x_1}({\sigma })}_{(u_1\cdots u_j;\,x_1)}(\widetilde{t}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}). \end{aligned}$$
(215)

For each \(\sigma \in S_{k+1}\) such that \(\sigma (x_1)=\alpha \), we define an element \(P_{\alpha ,\beta ,u_1\cdots u_j,x_1}({\sigma })\in S_{k+1}\) as follows. Take \({{\widehat{\sigma }}}\) as in (175) and define \(\eta \in S_{k+1}^{\alpha }\) by

$$\begin{aligned} \eta (l)=\left\{ \begin{array}{ccc} {{\widehat{\sigma }}}(l)&{}\qquad \textrm{if}&{}\qquad 1\le l\le x_1-1,\\ \beta &{}\qquad \textrm{if}&{}\qquad l=x_1,\\ {{\widehat{\sigma }}}(l)&{}\qquad \textrm{if}&{}\qquad x_1+1\le l\le k+1;\\ \end{array}\right. \end{aligned}$$
(216)

let \(P_{\alpha ,\beta ,u_1\cdots u_j,x_1}\) be the inverse image of \(\eta \) under the map \({\overline{\bullet }}\)  , that is, \(\overline{P_{\alpha ,\beta ,u_1\cdots u_j,x_1}}=\eta \). It is easy to verify that \(P_{\alpha ,\beta ,u_1\cdots u_j,x_1}\in \{\tau \in S_{k+1}\big |\tau (x_1)=\beta -1\}\).

Then by (159), we have5

$$\begin{aligned} \begin{aligned}&\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=tr\big \{\prod _{l=1}^k\big (g_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(u_1)}}^{-1}dg_{i_{{{\widehat{\sigma }}}(l)} i_{{{\widehat{\sigma }}}(u_1)}}\big )^{1-\delta _{x_1}(l)-\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (- g_{i_{{{\widehat{\sigma }}}(u_1)} i_{{{\widehat{\sigma }}}(k+1)}}dg_{i_{{{\widehat{\sigma }}}(u_1)} i_{{{\widehat{\sigma }}}(k+1)}}^{-1}\big )^{\delta _{x_1}(l)}\cdot \big (g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(u_1)}}^{-1}h_{i_{{{\widehat{\sigma }}}(l)}}dh_{i_{{{\widehat{\sigma }}}(l)}}^{-1}g_{i_{{{\widehat{\sigma }}}(l)}i_{{{\widehat{\sigma }}}(u_1)}}\big )^{-\delta _{u_1\cdots u_j}(l)}\big \}, \end{aligned} \end{aligned}$$
(217)

and

$$\begin{aligned} \begin{aligned}&\Delta ^{P_{\alpha ,\beta ,u_1\cdots u_j,x_1}(\sigma )}_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}})=tr\big \{\prod _{l=1}^k\big (g_{i_{\eta (l)} i_{\eta (u_1)}}^{-1}dg_{i_{\eta (l)} i_{\eta (u_1)}}\big )^{1-\delta _{x_1}(l)-\delta _{u_1\cdots u_j}(l)}\\&\qquad \cdot \big (-g_{i_{\eta (u_1)} i_{\eta (k+1)}}dg_{i_{\eta (u_1)} i_{\eta (k+1)}}^{-1}\big )^{\delta _{x_1}(l)}\cdot \big (g_{i_{\eta (l)}i_{\eta (u_1)}}^{-1}h_{i_{\eta (l)}}dh_{i_{\eta (l)}}^{-1}g_{i_{\eta (l)}i_{\eta (u_1)}}\big )^{\delta _{u_1\cdots u_j}(l)}\big \}. \end{aligned} \end{aligned}$$
(218)

Hence,

$$\begin{aligned} \begin{aligned} \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}(\widetilde{t}_{i_1\cdots \widehat{i_\beta }\cdots i_{k+2}})=\Delta ^{P_{\alpha ,\beta ,u_1\cdots u_j,x_1}(\sigma )}_{(u_1\cdots u_j;\,x_1)}(\widetilde{t}_{i_1\cdots \widehat{i_\alpha }\cdots i_{k+2}}). \end{aligned} \end{aligned}$$
(219)

Next we are going to prove that

$$\begin{aligned} sgn(P_{\alpha ,\beta ,u_1\cdots u_j,x_1}({\sigma }))=(-1)^{\alpha -\beta +1}\cdot sgn(\sigma ). \end{aligned}$$
(220)

Similarly, it suffices to prove that

$$\begin{aligned} sgn([\eta ]_{\alpha })=-sgn([\sigma ]_{\beta }). \end{aligned}$$
(221)

Since \([\eta ]_{\alpha }=\iota \circ [{{\widehat{\sigma }}}]_{\beta }\in S_{k+2}\) where \(\iota \in S_{k+2}\) is the permutation \((\alpha ,\beta )\), (221) holds.

Therefore, \(\kappa ^{\alpha }_4=(-1)^{\alpha -\beta +1}\cdot \kappa ^{\beta }_4\).

We complete the proof of Claim IV. \(\square \)

By Claim III, for integer \(k\ge 1\) and elements \(j_1,\ldots , j_k\in I\), we can define

$$\begin{aligned} s_{j_1\cdots j_k}:=s_{{\widehat{\beta }}j_1\cdots j_{k};\,\beta j_1\cdots j_{k}}, \end{aligned}$$
(222)

where \(\beta \) is any element in I. Noticing that only the transition functions \(g_{\gamma \delta }\) where \(\gamma ,\delta \in \{j_1,\ldots ,j_k\}\) appearing in (168), \(s_{j_1\cdots j_{k}}\in \Gamma (U_{j_1\cdots j_{k}},\Omega ^k)\). Thus, we can define a Čech \((k-1)\)-cochain \(h_{k-1}(E,g,{{\widetilde{g}}})\) by

$$\begin{aligned} h_{k-1}(E,g,\widetilde{g}):=\bigoplus \limits _{j_1<\cdots<j_{k}}s_{j_1\cdots j_{k}}\in \bigoplus \limits _{j_1<\cdots <j_{k}}\Gamma (U_{j_1\cdots j_{k}},\Omega ^k). \end{aligned}$$
(223)

Similarly, we can extend the components of \(h_{k-1}(E,g,\widetilde{g})\) to all k-tuples of elements in I. Then in the same way as Lemma 2.2, we can show that (168) and (222) are compatible with this extension.

Next, we prove that \({{\widehat{f}}}_k(E,{{\widetilde{g}}})\) is cohomologous to \({{\widehat{f}}}_k(E,g)\) by \(h_{k-1}(E,g,{{\widetilde{g}}})\).

Claim V. \(\partial h_{k-1}(E,g,{{\widetilde{g}}})=\widehat{f}_k(E,{{\widetilde{g}}})-{{\widehat{f}}}_k(E,g)\). That is, for any elements \(i_1,\ldots ,i_{k+1}\in I\),

$$\begin{aligned} {{\widetilde{t}}}_{i_1\cdots i_{k+1}}- t_{i_1\cdots i_{k+1}}=\sum _{j=1}^{k+1}(-1)^{j-1}s_{i_1\cdots {{\widehat{i}}}_j\cdots i_{k+1}}\big |_{U_{i_1\cdots i_{k+1}}}. \end{aligned}$$
(224)

Proof of Claim V. Recall that

$$\begin{aligned}&\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\cdot \Delta ^{\sigma }_{\emptyset ,\emptyset }({{\widetilde{t}}}_{i_1\cdots i_{k+1}})=\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\nonumber \\&\quad \cdot tr\big \{\prod _{l=1}^k\big (g_{i_{\sigma (l)} i_{\sigma (k+1)}}^{-1}dg_{i_{\sigma (l)} i_{\sigma (k+1)}}\big )\big \}=t_{t_{i_1\cdots i_{k+1}}}. \end{aligned}$$
(225)

Hence by Claims I and II, and formulas (155) and (225), we have that

$$\begin{aligned} \begin{aligned}&{{\widetilde{t}}}_{i_1\cdots i_{k+1}}-t_{i_1\cdots i_{k+1}}=\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!} \sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<\cdots<u_j\le k\,;\\ 1\le v_1\le k\,;\\ u_1,\ldots ,u_j,v_1\, {\text {are distinct}} \end{array}}\Delta ^{\sigma }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\qquad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!} \sum _{\begin{array}{c} j=0\,; \\ 1\le v_1\le k\,; \end{array}}\Delta ^{\sigma }_{\emptyset ,v_{1}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})+\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\\&\quad \sum _{\begin{array}{c} 1\le j\le k\,; \\ 1\le u_1<u_2<\cdots<u_j\le k\,; \end{array}}\Delta ^{\sigma }_{u_1\cdots u_j,\emptyset }({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\quad =\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!} \sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<\cdots<u_j\le k\,;\\ 1\le v_1\le k\,;\\ u_1,\ldots ,u_j,v_1\, {\text {are distinct}} \end{array}}\Delta ^{\sigma }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\qquad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!} \sum _{\begin{array}{c} j=0\,; \\ 1\le v_1\le k\,; \end{array}}\Delta ^{\sigma }_{\emptyset ,v_{1}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\qquad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k\,; \\ 1\le u_1<u_2<\cdots<u_j\le k \end{array}}\Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&\qquad +\sum _{\sigma \in S_{k+1}}\frac{sgn(\sigma )}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<u_2<\cdots <u_j\le k;\\ 1\le x_1\le k,\, x_1\notin \{u_1,\ldots ,u_j\} \end{array}}\Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}).\\ \end{aligned} \end{aligned}$$
(226)

Notice that for each fixed \(\xi \) such that \(1\le \xi \le k+1\), \(S_{k+1}\) is the disjoint union of the following sets,

$$\begin{aligned} \begin{aligned} \big \{\sigma \in S_{k+1}\big |\sigma (\xi )=\alpha \big \}\,\,\,\textrm{where}\,\,\alpha =1,\ldots ,k+1. \end{aligned} \end{aligned}$$
(227)

Then, by interchanging the order of summation in (225), we have

$$\begin{aligned} \begin{aligned} {{\widetilde{t}}}_{i_1\cdots i_{k+1}}-&t_{i_1\cdots i_{k+1}}=\sum _{\alpha =1}^{k+1}\,\,\,\,\frac{1}{(k+1)!} \sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<\cdots<u_j\le k\,;\\ 1\le v_1\le k\,;\\ u_1,\ldots ,u_j,v_1\, {\text {are distinct}} \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (v_1)=\alpha \end{array}}sgn(\sigma )\cdot \Delta ^{\sigma }_{u_1\cdots u_j,v_{1}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&+\sum _{\alpha =1}^{k+1}\qquad \frac{1}{(k+1)!}\sum _{\begin{array}{c} j=0\,; \\ 1\le v_1\le k\,; \end{array}} \sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (v_1)=\alpha \end{array}}sgn(\sigma )\cdot \Delta ^{\sigma }_{\emptyset ,v_{1}}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&+\sum _{\alpha =1}^{k+1}\qquad \frac{1}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k\,; \\ 1\le u_1<u_2<\cdots<u_j\le k; \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (k+1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,\emptyset )}({{\widetilde{t}}}_{i_1\cdots i_{k+1}})\\&+\sum _{\alpha =1}^{k+1}\qquad \frac{1}{(k+1)!}\sum _{\begin{array}{c} 1\le j\le k-1\,; \\ 1\le u_1<u_2<\cdots <u_j\le k;\\ 1\le x_1\le k,\, x_1\notin \{u_1,\ldots ,u_j\} \end{array}}\sum _{\begin{array}{c} \sigma \in S_{k+1},\\ \sigma (x_1)=\alpha \end{array}}{sgn(\sigma )}\cdot \Delta ^{\sigma }_{(u_1\cdots u_j;\,x_1)}({{\widetilde{t}}}_{i_1\cdots i_{k+1}}).\\ \end{aligned} \end{aligned}$$
(228)

Recalling (168), we conclude that

$$\begin{aligned} {{\widetilde{t}}}_{i_1\cdots i_{k+1}}- t_{i_1\cdots i_{k+1}}=\sum _{\alpha =1}^{k+1}(-1)^{\alpha -1}s_{i_1\cdots \widehat{i}_\alpha \cdots i_{k+1}}\big |_{U_{i_1\cdots i_{k+1}}}. \end{aligned}$$
(229)

We complete the proof of Claim V. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H. Construct holomorphic invariants in Čech cohomology by a combinatorial formula. manuscripta math. 172, 1045–1091 (2023). https://doi.org/10.1007/s00229-022-01440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01440-9

Mathematics Subject Classification

Navigation