Skip to main content
Log in

An unification of Orlicz-Morrey spaces and its applications

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

The first main result of this paper is a unified approach on the studies of Orlicz-Morrey spaces. There are at least three versions of Orlicz-Morrey spaces, the Nakai type, the Sawano-Sugano-Tanaka type and the Guliyev-Hasanov-Sawano-Noi type. This paper unifies the studies by introducing a Orlicz-Morrey spaces that include those Orlicz-Morrey spaces mentioned above. The second main result is on the applications of the Orlicz-Morrey spaces on partial differential equations. We obtain the Agmon-Douglis-Nirenberg estimates of uniformly elliptic equations, the estimates of the solutions of some nonhomogeneous quasilinear elliptic equations and the Beltrami equations on Orlicz-Morrey spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, C., Sharpley, RC.: Interpolation of Operators, Academic Press (1988)

  4. Blasco, O., Ruiz, A., Vega, L.: Non Interpolation in Morrey-Campanato and block Spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 28, 31–40 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Cejas, M., Durán, R.: Weighted a priori estimates for elliptic equations. Stud. Math. 243, 13–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clop, A., Cruz, V.: Weighted estimates of Beltrami equations. Ann. Acad. Sci. Fenn. Math. 38, 91–113 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deringoz, F., Guliyev, V.S., Samko, S.: Boundedness of the maximal operator and its commutators on vanishing generalized Orlicz-Morrey spaces. Ann. Acad. Sci. Fenn. Math. 40, 535–549 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deringoz, F., Guliyev, V., Hasanov, S.: Characterizations for the Riesz potential and its commutators on generalized Orlicz-Morrey spaces. J. Inequal. Appl. 248, 1–2 (2016). https://doi.org/10.1186/s13660-016-1192-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Deringoz, F., Guliyev, V., Hasanov, S.: A characterization for Adams type boundedness of the fractional maximal operator on generalized Orlicz-Morrey spaces. Integral Transforms Spec. Funct. 28, 284–299 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deringoz, F., Guliyev, V.S., Nakai, E., Sawano, Y., Shi, M.: Generalized fractional maximal and integral operators on Orlicz and generalized Orlicz-Morrey spaces of the third kind. Positivity 23, 727–757 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Fazio, G., Hakim, D., Sawano, Y.: Elliptic equations with discountinuous coefficients in generalized Morrey spaces. Eur. J. Math. 3, 728–762 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Fazio, G., Ragusa, R.A.: Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. J. Funct. Anal. 112, 241–256 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eroglu, A.: Fractional oscillatory integral operators and their commutators on generalized Orlicz-Morrey spaces of the third kind. Eurasian Math. J. 8, 36–47 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Fan, D., Lu, S., Yang, D.: Regularity in Morrey spaces of strong solutions to the nondivergence elliptic equations with \(VMO\) coefficients. Georgian Math. J. 5, 425–440 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gala, S., Sawano, Y., Tanaka, H.: A new Beale-Kato-Majda criteria for the 3D magneto-micropolar fluid equations in the Orlicz-Morrey space. Math. Methods Appl. Sci. 35, 1321–1334 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gala, S., Sawano, Y., Tanaka, H.: On the uniqueness of weak solutions of the 3D MHD equations in the Orlicz-Morrey space. Appl. Anal. 92, 776–783 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gala, S., Ragusa, R.A., Sawano, Y., Tanaka, H.: Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces. Appl. Anal. 93, 356–368 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gala, S., Sawano, Y., Tanaka, H.: A remark on two generalized Orlicz-Morrey spaces. J. Approx. Theory 198, 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grafakos, L.: Modern Fourier Analysis, Springer-Verlag (2009)

  20. Guliyev, V., Deringoz, F.: On the Riesz potential and its commutators on generalized Orlicz-Morrey spaces. Funct. Spaces Appl. 2014(617414), 11 (2014)

    MATH  Google Scholar 

  21. Guliyev, V., Hasanov, S., Sawano, Y., Noi, T.: Non-smooth atomic decompositions for generalized Orlicz-Morrey spaces of the third kind. Acta Appl. Math. 145, 133–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guliyev, V., Ekincioglu, I., Ahmadli, A., Omarova, M.: Global regularity in Orlicz-Morrey spaces of solutions to parabolic equations with \(VMO\) coefficients. J. Pseudo-Differ. Oper. Appl. 11, 1963–1989 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hakim, D., Nakai, E., Sawano, Y.: Generalized fractional maximal operators and vector-valued inequalities on generalized Orlicz-Morrey spaces. Rev. Mat. Complut. 29, 59–90 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ho, K.-P.: Vector-valued maximal inequalities on weighted Orlicz-Morrey spaces. Tokyo J. Math. 36, 499–512 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ho, K.-P.: Extrapolation, John-Nirenberg inequalities and characterizations of \(BMO\) in terms of Morrey type spaces. Rev. Mat. Complut. 30, 487–505 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ho, K.-P.: Singular integral operators with rough kernel on Morrey type spaces. Stud. Math. 244, 217–243 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ho, K.-P.: Weak type estimates of singular integral operators on Morrey-Banach spaces. Integr. Equ. Oper. Theory 91, 20 (2019). https://doi.org/10.1007/s00020-019-2517-3

    Article  MathSciNet  MATH  Google Scholar 

  28. Ho, K.-P.: Definability of singular integral operators on Morrey-Banach spaces. J. Math. Soc. Japan 72, 155–170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ho, K.-P.: Sublinear operators on block type space. Sci. China Math. 63, 1107–1124 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ho, K.-P.: Boundedness of operators and inequalities on Morrey-Banach spaces. Publ. Res. Inst. Math. Sci. Publ. Res. Inst. Math. Sci. 58, 551–577 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ho, K.-P.: Gradient estimates of parabolic Cauchy-Dirichlet problems on Morrey-Banach spaces. J. Elliptic Parabol. Equ. (2022). https://doi.org/10.1007/s41808-022-00174-9

    Article  MathSciNet  MATH  Google Scholar 

  32. Hurri-Syrjänen, R., Ohno, T., Shimomura, T.: On Trudinger-type inequalities in Orlicz-Morrey spaces of an integral form, Canad. Math. Bull. (published online)

  33. Iwaniec, T.: \(L^{p}\)-theory of quasiregular mappings. Quasiconformal space mappings, Lecture Notes in Math. 1508, Springer, Berlin, 39-64 (1992)

  34. Kokilashvilli, J., Krebc, M.: Weighted inequalities in Lorentz and Orlicz spaces, World Sci. (1991)

  35. Lu, Q., Tao, X.: Characterization of maximal operators in Orlicz-Morrey spaces of homogeneous type. Appl. Math. J. Chin. Univ. Ser. B 21, 5258 (2006)

    MathSciNet  Google Scholar 

  36. Maligranda, L., Matsuoka, K.: Maximal function in Beurling-Orlicz and central Morrey-Orlicz spaces. Colloq. Math. 138, 165–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Masta, A., Gunawan, H., Setya-Budhi, W.: On inclusion properties of two versions of Orlicz-Morrey spaces. Mediterr. J. Math. 14, 228 (2017). https://doi.org/10.1007/s00009-017-1030-7

    Article  MathSciNet  MATH  Google Scholar 

  38. Morrey, C.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Am. Math. Soc. 43, 126–166 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nakai, E.: Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–104 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nakai, E.: Generalized fractional integrals on Orlicz-Morrey spaces, In: Banach and Function Spaces, pp. 323-333 Yokohama Publ., Yokohama (2004)

  41. Nakai, E.: Calderón-Zygmund operators on Orlicz-Morrey spaces and modular inequalities, In: Banach and Function Spaces II, pp. 393-410, Yokohama Publ., Yokohama (2008)

  42. Nakai, E.: Orlicz-Morrey spaces and the Hardy-Littlewood maximal function. Stud. Math. 188, 193–221 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nakai, E.: Orlicz-Morrey spaces and their preduals, In: Banach and Function Spaces III, pp. 187-205, Yokohama Publishers, Yokohama, Japan (2011)

  44. Phuc, N.C.: Weighted estimates for nonhomogeneous quasilinear equations with discontinuous coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10, 1–17 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Pietsch, A.: History of Banach Spaces and Linear Operators. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  46. Ragusa, R.A., Scapellato, A.: Mixed Morrey spaces and their applications to partial differential equations. Nonlinear Anal. 151, 51–65 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Rubio de Francia, J.: Factorization and extrapolation of weights. Bull. Am. Math. Soc. 7, 393–395 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rubio de Francia, J.A.: new technique in the theory of \(A_{p}\) weights. In: Topics in modern harmonic analysis, vol. I, II , Turin, Milan,: pages 571579, p. 1983. Ist. Naz. Alta Mat, Francesco Severi, Rome (1982)

  49. Rubio de Francia, J.: Factorization theory and \(A_{p}\) weights. Am. J. Math. 106, 533–547 (1984)

    Article  MATH  Google Scholar 

  50. Sawano, Y., Sugano, T., Tanaka, H.: Orlicz-Morrey spaces and fractional operators. Potential Anal. 36(4), 517–556 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Stein, E.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, NJ, (1993)

Download references

Acknowledgements

The author thanks the reviewers for their valuable suggestions which improve the presentation of this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok-Pun Ho.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, KP. An unification of Orlicz-Morrey spaces and its applications. manuscripta math. 172, 1201–1226 (2023). https://doi.org/10.1007/s00229-022-01430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01430-x

Mathematics Subject Classification

Navigation