Skip to main content
Log in

Weak Type Estimates of Singular Integral Operators on Morrey–Banach Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We establish the weak type estimates of singular integral operators on Morrey spaces built on Banach function space. In particular, we have these weak type estimates for Morrey spaces with variable exponent when the infimum of the exponent function equals to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almedia, M., Ferreira, L.: On the Navier–Stokes equations in the half-space with initial and boundary rough data in Morrey space. J. Differ. Equ. 254, 1548–1570 (2013)

    Article  MathSciNet  Google Scholar 

  2. Almeida, A., Samko, S.: Approximation in Morrey space. J. Funct. Anal. 272, 2392–2411 (2017)

    Article  MathSciNet  Google Scholar 

  3. Alvarez, J., Pérez, C.: Estimates with \(A_{\infty }\) weights for various singular integral operators. Boll. Un. Mat. Ital. A (7) 8, 123–133 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Alvarez, J.: Continuity of Calderón–Zygmund type operators on the predual of a Morrey space. In: Ryan, J. (ed.) Clifford Algebras in Analysis and Related Topics, pp. 309–319. CRC Press, Boca Raton (1996)

    Google Scholar 

  5. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  6. Calderón, A., Zygmund, A.: On singular integral. Am. J. Math. 78, 289–309 (1956)

    Article  Google Scholar 

  7. Christ, M.: Weak type (1,1) bounds for rough operators. Ann. Math. 128, 19–42 (1988)

    Article  MathSciNet  Google Scholar 

  8. Chanillo, S., Christ, M.: Weak (1,1) bounds for oscillatory singular integrals. Duke Math. J. 55, 141–155 (1987)

    Article  MathSciNet  Google Scholar 

  9. Coifman, R., Meyer, Y.: Au delà des opérateurs pseudo-différentiels. Astérisque 57, 1–210 (1978)

    MATH  Google Scholar 

  10. Cruz-Uribe, D., Fiorenza, A., Neugebauer, C.: The maximal function on variable \(L_{p}\) spaces. Ann. Acad. Sci. Fenn. Math. 28, 223–238 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Cruz-Uribe, D., Fiorenza, S.F.O,A., Martell, J., Pérez, C.: The boundedness of classical operators on variable \(L^{p}\) spaces. Ann. Acad. Sci. Fenn. Math. 31, 239–264 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Cruz-Uribe, D., Martell, J., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advance and Applications, vol. 215. Birkhäuser, Basel (2011)

    MATH  Google Scholar 

  13. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces. Birkhäuser, Basel (2013)

    Book  Google Scholar 

  14. Curbera, G., García-Cuerva, J., Martell, J., Pérez, C.: Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203, 256–318 (2006)

    Article  MathSciNet  Google Scholar 

  15. Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Springer, Berlin (2011)

    Book  Google Scholar 

  16. Ferreira, L.: On a bilinear estimate in weak-Morrey spaces and uniqueness for Navier–Stokes equations. J. Math. Pures Appl. (9) 105, 228–247 (2016)

    Article  MathSciNet  Google Scholar 

  17. Folland, G.: Real Analysis, Modern Techniques and Their Applications. Wiley, Hoboken (1984)

    MATH  Google Scholar 

  18. Giga, Y., Miyakawa, T.: Navier–Stokes flow in \({\mathbb{R}}^{3}\) with measures as initial vorticity and Morrey spaces. Commun. Partial Differ. Equ. 14, 577–618 (1989)

    Article  Google Scholar 

  19. Grafakos, L.: Modern Fourier Analysis. Springer (2009)

  20. Guliyev, V.: Boundedness of the maximal, potential and singular operators in the generalized Morrey spaces. J. Inequal. Appl. 2009, 503948 (2009)

    Article  MathSciNet  Google Scholar 

  21. Ho, K.-P.: Atomic decomposition of Hardy spaces and characterization of \(BMO\) via Banach function spaces. Anal. Math. 38, 173–185 (2012). Ho, K.-P.: Correction of “Atomic decomposition of Hardy spaces and characterization of \(BMO\) via Banach function spaces. Anal. Math. (to appear)

  22. Ho, K.-P.: Vector-valued singular integral operators on Morrey type spaces and variable Triebel–Lizorkin–Morrey spaces. Ann. Acad. Sci. Fenn. Math. 37, 375–406 (2012)

    Article  MathSciNet  Google Scholar 

  23. Ho, K.-P.: Sobolev–Jawerth embedding of Triebel–Lizorkin–Morrey–Lorentz spaces and fractional integral operators on Hardy type spaces. Math. Nachr. 287, 1674–1686 (2014)

    Article  MathSciNet  Google Scholar 

  24. Ho, K.-P.: Vector-valued operators with singular kernel and Triebel–Lizorkin-block spaces with variable exponents. Kyoto J. Math. 56, 97–124 (2016)

    Article  MathSciNet  Google Scholar 

  25. Ho, K.-P.: Extrapolation, John–Nirenberg inequalities and characterizations of \(BMO\) in terms of Morrey type spaces. Rev. Mat. Complut. 30, 487–505 (2017)

    Article  MathSciNet  Google Scholar 

  26. Ho, K.-P.: Fractional integral operators with homogeneous kernels on Morrey spaces with variable exponents. J. Math. Soc. Jpn. 69, 1059–1077 (2017)

    Article  MathSciNet  Google Scholar 

  27. Ho, K.-P.: Singular integral operators with rough kernel on Morrey type spaces. Studia Math. 244, 217–243 (2019)

    Article  MathSciNet  Google Scholar 

  28. Ho, K.-P.: Definability of singular integral operators on Morrey–Banach spaces J. Math. Soc. Jpn. (published online)

  29. Kalton, N., Peck, N., Roberts, J.: An \(F\)-Space Sampler, London Mathematical Society, Lecture Note Series, vol. 89. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  30. Kato, T.: Strong solutions of the Navier–Stokes equation in Morrey spaces. Bol. Soc. Bras. Mat. 22, 127–155 (1992)

    Article  MathSciNet  Google Scholar 

  31. Kokilashvili, V., Meskhi, A.: Boundedness of maximal and singular operators in Morrey spaces with variable exponent. Armen. J. Math. 1, 18–28 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Maio, C.-X., Yuan, B.-Q.: Weak Morrey spaces and strong solutions to the Navier–Stokes equations. Sci. China Ser. A 50, 1401–1417 (2007)

    Article  MathSciNet  Google Scholar 

  33. Meyer, Y., Coifman, R.: Wavelets: Calderón–Zygmund and Multilinear Operators. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  34. Nakai, E.: Hardy–Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces. Math. Nachr. 166, 95–104 (1994)

    Article  MathSciNet  Google Scholar 

  35. Nakai, E.: Orlicz–Morrey spaces and the Hardy–Littlewood maximal function. Studia Math. 188, 193–221 (2008)

    Article  MathSciNet  Google Scholar 

  36. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  37. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  38. Taylor, M.E.: Analysis on Morrey spaces and appplications to Navier–Stokes and other evolution equations. Commun. Partial Differ. Equ. 17, 1407–1456 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwok-Pun Ho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, KP. Weak Type Estimates of Singular Integral Operators on Morrey–Banach Spaces. Integr. Equ. Oper. Theory 91, 20 (2019). https://doi.org/10.1007/s00020-019-2517-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-019-2517-3

Keywords

Mathematics Subject Classification

Navigation