Skip to main content
Log in

Existence and asymptotic behavior of positive solutions for a class of locally superlinear Schrödinger equation

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

This paper treats the existence of positive solutions of \(-\Delta u + V(x) u = \uplambda f(u)\) in \({\mathbb {R}}^N\). Here \(N \ge 1\), \(\uplambda > 0\) is a parameter and f(u) satisfies conditions only in a neighborhood of \(u=0\). We shall show the existence of positive solutions with potential of trapping type or \({\mathcal {G}}\)-symmetric potential where \({\mathcal {G}} \subset O(N)\). Our results extend previous results (Adachi and Watanabe in J Math Anal Appl 507:125765, 2022; Costa and Wang in Proc Am Math Soc 133(3):787–794, 2005; do Ó et al. in J Math Anal Appl 342:432–445, 2008) as well as we also study the asymptotic behavior of a family \((u_\uplambda )_{\uplambda \ge \uplambda _0}\) of positive solutions as \(\uplambda \rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S.: A positive solution of a nonhomogeneous elliptic equation in \({\mathbb{R} }^N\) with \(G\)-invariant nonlinearity. Commun. PDE 27, 1–22 (2002)

    Article  MATH  Google Scholar 

  2. Adachi, S., Watanabe, T.: \(G\)-invariant positive solutions for a quasilinear Schrödinger equation. Adv. Differ. Eqns. 16, 289–324 (2011)

    MATH  Google Scholar 

  3. Adachi, S., Watanabe, T.: G-invariant positive solutions for a class of locally superlinear Schrödinger equations. J. Math. Anal. Appl. 507, 125765 (2022)

    Article  MATH  Google Scholar 

  4. Alves, C., Souto, M.: Existence of solution for a class of problem in whole \({\mathbb{R} }^N\) without the Ambrosetti-Rabinowitz condition. Manuscr. Math. 165, 453–468 (2021)

    Article  MATH  Google Scholar 

  5. Bahri, A., Li, Y.Y.: On a min-max procedure for the existence of a positive solution for certain scalar field equations in \({\mathbf{R} }^N\). Rev. Mat. Iberoamericana 6(1–2), 1–15 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsch, T., Wang, Z.-Q., Willem, M.: The Dirichlet problem for superlinear elliptic equations. Stationary partial differential equations. Vol. II, 1–55, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2005)

  7. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational. Mech. Anal. 82(4), 313–345 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berestycki, H., Gallouët, T., Kavian, O.: Éuations de champs scalaires euclidiens non linéaires dans le plan. C. R. Acad. Sci. Paris Sér. I Math. 297(5), 307–310 (1983)

    MathSciNet  MATH  Google Scholar 

  9. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture notes in Mathematics, AMS (2003)

  10. Cerami, G.: Un criterio di esistenza per i punti critici su varieta’illimitate. Istit. Lombardo Accad. Sci. Lett. Rend. A 112(2), 332–336 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Chen, S., Li, S.: On a nonlinear elliptic eigenvalue problem. J. Math. Anal. Appl. 307(2), 691–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Costa, D.G., Wang, Z.Q.: Multiplicity results for a class of superlinear elliptic problems. Proc. Am. Math. Soc. 133(3), 787–794 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Bièvre, S., Genoud, F., Rota Nodari, S.: Orbital stability: analysis meets geometry. Nonlinear optical and atomic systems, 147–273, Lecture Notes in Math., 2146, CEMPI Ser., Springer, Cham (2015)

  14. do Ó, J.M., Medeiros, E., Severo, U.: On the existence of signed and sign-changing solutions for a class of superlinear Schrödinger equations. J. Math. Anal. Appl. 342, 432–445 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ekeland, I.: Convexity methods in Hamiltonian mechanics. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 19. Springer, Berlin (1990)

  16. Enguiça, R., Ricardo, S., Sanchez, L.: A second order non-autonomous problem on the half-line: a variational approach. Mathematical models in engineering, biology and medicine, 119–128, AIP Conf. Proc., 1124, Amer. Inst. Phys., Melville, NY (2009)

  17. Enguiça, R., Gavioli, A., Sanchez, L.: Solutions of second-order and fourth-order ODEs on the half-line. Nonlinear Anal. 73, 2968–2979 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gavioli, A., Sanchez, L.: Positive homoclinic solutions to some Schrödinger type equations. Differ. Int. Eqns. 29, 665–682 (2016)

    MATH  Google Scholar 

  19. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations in \({\mathbf{R}}^n\). Mathematical analysis and applications, Part A, pp. 369–402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London (1981)

  20. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer, Berlin (2001)

  21. Han, Q., Lin, F.: Elliptic partial differential equations. Second edition. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2011)

  22. Hirata, J.: A positive solution of a nonlinear elliptic equation in \({\mathbb{R} }^N\) with G-symmetry. Adv. Differ. Eqns. 12, 173–199 (2007)

    MATH  Google Scholar 

  23. Hirata, J.: A positive solution of a nonlinear Schrödinger equation with G-symmetry. Nonlinear Anal. 69(9), 3174–3189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \({\mathbf{R} }^N\). Proc. R. Soc. Edinburgh Sect. A 129(4), 787–809 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeanjean, L., Tanaka, K.: A remark on least energy solutions in \({\mathbf{R} }^N\). Proc. Am. Math. Soc. 131(8), 2399–2408 (2003)

    Article  MATH  Google Scholar 

  26. Jeanjean, L., Tanaka, K.: A note on a mountain pass characterization of least energy solutions. Adv. Nonlinear Stud. 3(4), 445–455 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kato, T.: Schrödinger operators with singular potentials. Israel J. Math. 13, 135–148 (1972)

    Article  MathSciNet  Google Scholar 

  28. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0\) in \({\mathbf{R} }^n\). Arch. Rational Mech. Anal. 105(3), 243–266 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(2), 109–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rabier, P.J.: On the Ekeland-Ghoussoub-Preiss and Stuart criteria for locating Cerami sequences. Ric. Mat. 61(1), 19–29 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sato, Y.: The existence and non-existence of solutions for the nonlinear Schrödinger equation in one dimension. Nonlinear Anal. RWA. 43, 477–494 (2018)

    Article  MATH  Google Scholar 

  35. Stuart, C.A.: Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation. Milan J. Math. 76, 329–399 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stuart, C.A.: Locating Cerami sequences in a mountain pass geometry. Commun. Appl. Anal. 15(2–4), 569–588 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston, MA (1996)

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP19K03590, JP19H01797, JP18K03362, JP21K03317 and by JSPS-NSFC joint research project “Variational study of nonlinear PDEs" and by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Adachi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adachi, S., Ikoma, N. & Watanabe, T. Existence and asymptotic behavior of positive solutions for a class of locally superlinear Schrödinger equation. manuscripta math. 172, 933–970 (2023). https://doi.org/10.1007/s00229-022-01428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01428-5

Mathematics Subject Classification

Navigation