Skip to main content
Log in

Triharmonic CMC hypersurfaces in \({\mathbb {R}}^{5}(c)\)

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

A triharmonic map is a critical point of the tri-energy functional defined on the space of smooth maps between two Riemannian manifolds. In this paper, we prove that any CMC proper triharmonic hypersurface in the 5-dimensional space form \({\mathbb {R}}^{5}(c)\) must have constant scalar curvature. Furthermore, we show that any CMC triharmonic hypersurface in \({\mathbb {R}}^5\) or \({\mathbb {H}}^5\) must be minimal, which supports the generalized Chen’s conjecture; we also give some characterizations of CMC proper triharmonic hypersurfaces in \({\mathbb {S}}^5\). Similar results are obtained in the higher dimension case under an additional assumption on the numbers of the distinct principal curvatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic Functions. Oxford Mathematical Monographs. Notes taken by Eberhard Gerlach, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York (1983)

  2. Baird, P., Fardoun, A., Ouakkas, S.: Liouville-type theorems for biharmonic maps between Riemannian manifolds. Adv. Calc. Var. 3(1), 49–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baird, P., Gudmundsson, S.: \(p\)-harmonic maps and minimal submanifolds. Math. Ann. 294(4), 611–624 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burel, J.-M., Loubeau, E.: \(p\)-harmonic morphisms: the \(1<p<2\) case and some non-trivial examples. In Differential geometry and integrable systems (Tokyo, 2000), volume 308 of Contemp. Math., 21–37. Amer. Math. Soc., Providence, RI (2002)

  5. Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17(2), 169–188 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Chen, H., Guan, Z.: Triharmonic CMC Hypersurfaces in Space Forms. Results Math. 77, 155 (2022)

    Article  MATH  Google Scholar 

  7. Eells, J., Jr., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fu, Y., Hong, M.-C., Zhan, X.: On Chen’s biharmonic conjecture for hypersurfaces in \(\mathbb{R} ^5\). Adv. Math. 383, 107697 (2021)

    Article  MATH  Google Scholar 

  9. Jiang, G.Y.: \(2\)-harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 7(4), 389–402 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Maeta, S.: \(k\)-harmonic maps into a Riemannian manifold with constant sectional curvature. Proc. Am. Math. Soc. 140(5), 1835–1847 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maeta, S.: The second variational formula of the \(k\)-energy and \(k\)-harmonic curves. Osaka J. Math. 49(4), 1035–1063 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Maeta, S.: Construction of triharmonic maps. Houston J. Math. 41(2), 433–444 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Maeta, S.: Polyharmonic maps of order \(k\) with finite \(L^p\) k-energy into Euclidean spaces. Proc. Am. Math. Soc. 143(5), 2227–2234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maeta, S., Nakauchi, N., Urakawa, H.: Triharmonic isometric immersions into a manifold of non-positively constant curvature. Monatsh. Math. 177(4), 551–567 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Montaldo, S., Oniciuc, C., Ratto, A.: Polyharmonic hypersurfaces into space forms. Isr. J. Math. 249(1), 343–374 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Montaldo, S., Ratto, A.: New examples of \(r\)-harmonic immersions into the sphere. J. Math. Anal. Appl. 458(1), 849–859 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Montaldo, S., Ratto, A.: Proper \(r\)-harmonic submanifolds into ellipsoids and rotation hypersurfaces. Nonlinear Anal. 172, 59–72 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nakauchi, N., Urakawa, H.: Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature. Ann. Glob. Anal. Geom. 40(2), 125–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nakauchi, N., Urakawa, H.: Biharmonic submanifolds in a Riemannian manifold with non-positive curvature. Results Math. 63(1–2), 467–474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakauchi, N., Urakawa, H.: Polyharmonic maps into the Euclidean space. Note Mat. 38(1), 89–100 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Nakauchi, N., Urakawa, H., Gudmundsson, S.: Biharmonic maps into a Riemannian manifold of non-positive curvature. Geom. Dedicata 169, 263–272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ou, Y.-L.: \(p\)-harmonic morphisms, biharmonic morphisms, and nonharmonic biharmonic maps. J. Geom. Phys. 56(3), 358–374 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ou, Y.-L., Chen, B.-Y.: Biharmonic Submanifolds and Biharmonic Maps in Riemannian Geometry. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2020)

    Book  MATH  Google Scholar 

  24. Wang, S.B.: The first variation formula for \(k\)-harmonic mapping. J. Nanchang Univ. 13(1) (1989)

  25. Wang, S.B.: Some results on stability of \(3\)-harmonic mappings. Chin. Ann. Math. Ser. A 12(4), 459–467 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Haizhong Li for bringing the question to our attention and his very helpful suggestions and comments. We also thank the anonymous referee for the careful reading and pointing out the issues.

Funding

The first author was partially supported by Natural Science Foundation of Shaanxi Province Grant No. 2020JQ-101 and the Fundamental Research Funds for the Central Universities Grant No. 310201911cx013. The second author was partially supported by NSFC Grant Nos. 11831005 and 11671224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Chen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Guan, Z. Triharmonic CMC hypersurfaces in \({\mathbb {R}}^{5}(c)\). manuscripta math. 172, 209–220 (2023). https://doi.org/10.1007/s00229-022-01409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-022-01409-8

Mathematics Subject Classification

Navigation