Skip to main content
Log in

Classification of 6-dimensional splittable flat solvmanifolds

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

A flat solvmanifold is a compact quotient \(\Gamma \backslash G\) where G is a simply-connected solvable Lie group endowed with a flat left invariant metric and \(\Gamma \) is a lattice of G. Any such Lie group can be written as \(G={\mathbb {R}}^k < imes _{\phi } {\mathbb {R}}^m\) with \({\mathbb {R}}^m\) the nilradical. In this article we focus on 6-dimensional splittable flat solvmanifolds, which are obtained quotienting G by a lattice \(\Gamma \) that can be decomposed as \(\Gamma =\Gamma _1 < imes _{\phi }\Gamma _2\), where \(\Gamma _1\) and \(\Gamma _2\) are lattices of \({\mathbb {R}}^k\) and \({\mathbb {R}}^m\), respectively. We analyze the relation between these lattices and the conjugacy classes of finite abelian subgroups of \(\mathsf{GL}(n,{\mathbb {Z}})\), which is known up to \(n\le 6\). From this we obtain the classification of 6-dimensional splittable flat solvmanifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. An affine equivalence between two Riemannian manifolds M and N is a diffeomorphism \(F:M\rightarrow N\) such that \(f^*\nabla ^M =\nabla ^N\), where \(\nabla ^M\) (respectively \(\nabla ^N\)) is the Levi–Civita connection on M (respectively N).

  2. A Lie algebra \({\mathfrak {g}}\) is said to be unimodular if \({\text {tr}}{\text {ad}}_X=0\) for all \(X\in {\mathfrak {g}}\).

  3. We will denote \(A\oplus B\) the block diagonal matrix \(\begin{pmatrix}A&{}0\\ 0&{}B\end{pmatrix}\).

  4. A \(n\times n\) matrix A will be said to be similar (or conjugated) to B if there exists \(P\in \mathsf{GL}_n({\mathbb {R}})\) such that \(P^{-1}AP=B\) and integrally similar if \(P\in \mathsf{GL}_n({\mathbb {Z}})\).

  5. Given a matrix A, \(P_A\) and \(M_A\) will denote the characteristic and the minimal polynomials of A respectively.

  6. See http://primefan.tripod.com/TotientAnswers1000.html.

  7. We include the computations we made to obtain the classification of the integral similarity classes of integer matrices obtained by conjugating \(\phi (t_0)\) because we believe that these calculations are useful for tackling the same problem in higher dimensions where there are no classifications available.

References

  1. Auslander, L.: Fundamental groups of compact solvmanifolds. Amer. J. Math. 82, 689–697 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auslander, L., Auslander, M.: Solvable Lie groups and locally Euclidean Riemannian spaces. Proc. Amer. Math. Soc. 9, 933–941 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barberis, M.L., Dotti, I., Fino, A.: Hyper-Kähler quotients of solvable Lie groups. J. Geom. Phys. 56, 691–711 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bock, C.: On low-dimensional solvmanifolds. Asian J. Math. 20, 199–262 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charlap, L.: Bieberbach groups and flat manifolds. Springer, New York (1986)

    Book  MATH  Google Scholar 

  6. Chevalley, C.: On the topological structure of solvable groups. Ann. of Math. 42, 668–675 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dekimpe, K., Halenda, M., Szczepański, A.: Kähler flat manifolds. J. Math. Soc. Japan 61, 363–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernández, M., Muñoz, V., Santisteban, J.: Cohomologically Kähler manifolds with no Kähler metrics. Int. J. Math. Math. Sci. 52, 3315–3325 (2003)

    Article  MATH  Google Scholar 

  9. Fischer, M.: Lattices of oscillator groups. J. Lie Theory 27, 85–110 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Gordon, C., Wilson, E.: The spectrum of the Laplacian on Riemannian Heisenberg manifolds. Mich. Math. J. 33, 253–271 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hiller, H.: Crystallography and cohomology of groups. Am. Math. Monthly 93, 765–779 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hua, L.K., Reiner, I.: Automorphisms of the unimodular group. Trans. Amer. Math. Soc. 71, 331–348 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kasuya, H.: Vaisman metrics on solvmanifolds and Oeljeklaus-Toma manifolds. Bull. Lond. Math. Soc. 45, 15–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kasuya, H.: Minimal models, formality, and hard Lefschetz properties of solvmanifolds with local systems. J. Differential Geom. 93, 269–297 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Thurston, W.: Some simple examples of symplectic manifolds. Proc. Amer. Math. Soc. 55, 467–468 (1976)

    MathSciNet  MATH  Google Scholar 

  16. Koo, R.: A classification of matrices of finite order over \({\mathbb{C}}, {\mathbb{R}}\) and \({\mathbb{Q}}\). Math. Mag. 76, 143–148 (2003)

    MathSciNet  Google Scholar 

  17. Taussky, O.: On a theorem of Latimer and Macduffee. Canadian J. Math. 1, 300–302 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malcev, A.: On a class of homogeneous spaces. Izv. Akad. Nauk. Armyan. SSSR Ser. Mat 13, 9–32 (1949). (English translation:Amer. Math. Soc. Transl. 195139(1951), 33 pp)

  19. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miatello, R., Rossetti, J.P.: Spectral properties of flat manifolds. Contemp. Math. 491, 83–113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morgan, A.: The classification of flat solvmanifolds. Trans. Amer. Math. Soc. 239, 321–351 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mostow, G.D.: Factor spaces of solvable groups. Ann. of Math. 60, 1–27 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mostow, G.D.: Cohomology of topological groups and solvmanifolds. Ann. of Math. 73, 20–48 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nomizu, K.: On the cohomology of compact homogeneous space of nilpotent Lie groups. Ann. of Math. 59, 531–538 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  25. Oeljeklaus, K., Toma, M.: Non-Kähler compact complex manifolds associated to number fields. Ann. Inst. Fourier (Grenoble) 55, 161–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Plesken, W., Schulz, T.: Counting crystallographic groups in low dimensions. Exp. Math. 9, 407–411 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tolcachier, A.: Holonomy groups of compact flat solvmanifolds. Geom. Dedicata 209, 95–117 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cavallo, B., Delgado, J., Kahrobaei, D., Ventura, E.: Algorithm recognition of infinite cyclic extensions. J. Pure Appl. Algebra 221, 2157–2179 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Weintraub,S.: A guide to advanced linear algebra, Mathematical Association of America, (2011)

  30. Worley, R.: Pairwise relatively prime solutions of linear diophantine equations. J. Austral. Math. Soc. 37, 39–44 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yamada, T.: A construction of lattices in splittable solvable Lie groups. Kodai Math. J. 39, 378–388 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, Q.: Conjugacy classes of torsion in \({\sf GL}_N({\mathbb{Z}})\). Electron. J. Linear Algebra 30, 478–493 (2015)

Download references

Acknowledgements

I am very grateful to my Ph.D. advisor Adrián Andrada for his continuous guidance during the writing of this paper. I also thank Jonas Deré and Derek Holt for the useful conversations and Examples 3.3 and 3.8, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Tolcachier.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolcachier, A. Classification of 6-dimensional splittable flat solvmanifolds. manuscripta math. 170, 531–561 (2023). https://doi.org/10.1007/s00229-021-01364-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01364-w

Mathematics Subject Classification

Navigation