Skip to main content
Log in

Holonomy groups of compact flat solvmanifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

In this article we study the holonomy groups of flat solvmanifolds. It is known that the holonomy group of a flat solvmanifold is abelian; we give an elementary proof of this fact and moreover we prove that any finite abelian group is the holonomy group of a flat solvmanifold. Furthermore, we show that the minimal dimension of a flat solvmanifold with holonomy group \({\mathbb {Z}}_n\) coincides with the minimal dimension of a compact flat manifold with holonomy group \({\mathbb {Z}}_n\). Finally, we give the possible holonomy groups of flat solvmanifolds in dimensions 3, 4, 5 and 6; exhibiting in the latter case a general construction to show examples of non cyclic holonomy groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. An affine equivalence between two Riemannian manifolds M and N equipped with connections \(\nabla ^M\) and \(\nabla ^N\) respectively, is a diffeomorphism \(F:M\rightarrow N\) such that \(\nabla _X^M Y=\nabla ^N_{dFX}(dF Y)\) for all \(X,Y\in {\mathfrak {X}}(M)\).

  2. A Lie algebra \({\mathfrak {g}}\) is said to be unimodular if \({\text {tr}}{\text {ad}}_X=0\) for all \(X\in {\mathfrak {g}}\).

  3. We will denote by \(A=A_1\oplus A_2\) the block diagonal matrix in \({\mathbb {R}}^4\) given by \(A=\begin{pmatrix}A_1&{}\\ {} &{}\quad A_2\end{pmatrix}\).

  4. The values for \(at_0\) and \(bt_0\) are interchangeable.

References

  1. Auslander, L.: Discrete uniform subgroups of solvable Lie groups. Trans. Am. Math. Soc. 99, 398–402 (1961)

    Article  MathSciNet  Google Scholar 

  2. Auslander, L.: An exposition of the structure of solvmanifolds. I. Algebraic theory. Bull. Am. Math. Soc. 79, 227–261 (1973)

    Article  MathSciNet  Google Scholar 

  3. Auslander, L.: An exposition of the structure of solvmanifolds. II. G-induced flows. Bull. Am. Math. Soc. 79, 262–285 (1973)

    Article  MathSciNet  Google Scholar 

  4. Auslander, L., Auslander, M.: Solvable Lie groups and locally Euclidean Riemann spaces. Proc. Am. Math. Soc. 9, 933–941 (1958)

    Article  MathSciNet  Google Scholar 

  5. Auslander, L., Kuranishi, M.: On the holonomy group of locally Euclidean spaces. Ann. Math. 65, 411–415 (1957)

    Article  MathSciNet  Google Scholar 

  6. Barberis, M.L., Dotti, I., Fino, A.: Hyper-Kähler quotients of solvable Lie groups. J. Geom. Phys. 56, 691–711 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bieberbach, L.: Über die Bewegungsgruppen des \(n\)-dimensionalen euklidischen Raumes mit einem endlichen Fundamentalbereich. Gött. Nachr. 1910, 75–84 (1910)

    MATH  Google Scholar 

  8. Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume I. Math. Ann. 70, 297–336 (1911)

    Article  MathSciNet  Google Scholar 

  9. Bieberbach, L.: Über die Bewegungsgruppen der Euklidischen Räume II. Math. Ann. 72, 207–216 (1912)

    Article  Google Scholar 

  10. Bock, C.: On low-dimensional solvmanifolds. Asian J. Math. 20, 199–262 (2016)

    Article  MathSciNet  Google Scholar 

  11. Charlap, L.: Bieberbach Groups and Flat Manifolds. Springer, New York (1986)

    Book  Google Scholar 

  12. Conway, J.H., Rossetti, J.P.: Describing the platycosms. arXiv:math/0311476 [math.DG]

  13. Dekimpe, K., Halenda, M., Szczepański, A.: Kähler flat manifolds. J. Math. Soc. Jpn. 61, 363–377 (2009)

    Article  Google Scholar 

  14. Fernández, M., Manero, V., Otal, A., Ugarte, L.: Symplectic half-flat solvmanifolds. Ann. Glob. Anal. Geom. 43, 367–383 (2013)

    Article  MathSciNet  Google Scholar 

  15. Greiter, G.: A simple proof for a theorem of Kronecker. Am. Math. Month. 9, 756–757 (1978)

    Article  MathSciNet  Google Scholar 

  16. Hantzsche, W., Wendt, H.: Dreidimensionale euklidische Raumformen. Math. Ann. 110, 593–611 (1935)

    Article  MathSciNet  Google Scholar 

  17. Hattori, A.: Spectral sequence in the de Rham cohomology of fibre bundles. J. Fac. Sci. Univ. Tokyo I(8), 289–331 (1960)

    MathSciNet  MATH  Google Scholar 

  18. Hiller, H.: Minimal dimension of flat manifolds with abelian holonomy (unpublished)

  19. Kasuya, H.: Vaisman metrics on solvmanifolds and Oeljeklaus–Toma manifolds. Bull. Lond. Math. Soc. 45, 15–26 (2013)

    Article  MathSciNet  Google Scholar 

  20. Malcev, A.: On a class of homogeneous spaces. Izv. Akad. Nauk. Armyan. SSSR Ser. Mat. 13, 201–212 (1949)

    MathSciNet  Google Scholar 

  21. Milnor, J.: Curvatures of left invariant metrics on Lie groups. Adv. Math. 21, 293–329 (1976)

    Article  MathSciNet  Google Scholar 

  22. Morgan, A.: The classification of flat solvmanifolds. Trans. Am. Math. Soc. 239, 321–351 (1978)

    Article  MathSciNet  Google Scholar 

  23. Mostow, G.: Cohomology of topological groups and solvmanifolds. Ann. Math. 73, 20–48 (1961)

    Article  MathSciNet  Google Scholar 

  24. Nomizu, K.: On the cohomology of compact homogeneous space of nilpotent Lie groups. Ann. Math. 59, 531–538 (1954)

    Article  MathSciNet  Google Scholar 

  25. Oeljeklaus, K., Toma, M.: Non-Kähler compact complex manifolds associated to number fields. Ann. Inst. Fourier (Grenoble) 55, 161–171 (2005)

    Article  MathSciNet  Google Scholar 

  26. Otal, A., Ugarte, L., Villacampa, R.: Invariant solutions to the Strominger system and the heterotic equations of motion. Nuclear Phys. B 920, 442–474 (2017)

    Article  MathSciNet  Google Scholar 

  27. Raghunathan, M.: Discrete Subgroups of Lie Groups. Springer, Berlin (1972)

    Book  Google Scholar 

  28. Szczepański, A.: Geometry of Crystallographic Groups. World Scientific, Singapore (2012)

    Book  Google Scholar 

  29. Thurston, W.: Some simple examples of symplectic manifolds. Proc. Am. Math. Soc. 55, 467–468 (1976)

    MathSciNet  MATH  Google Scholar 

  30. Varadarajan, V.: Lie Groups, Lie Algebras and Their Representations. Springer, New York (1984)

    Book  Google Scholar 

  31. Wolf, J.: Spaces of Constant Curvature. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tolcachier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolcachier, A. Holonomy groups of compact flat solvmanifolds. Geom Dedicata 209, 95–117 (2020). https://doi.org/10.1007/s10711-020-00524-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-020-00524-8

Keywords

Mathematics Subject Classification (2010)

Navigation