Skip to main content
Log in

An 8-periodic exact sequence of Witt groups of Azumaya algebras with involution

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Given an Azumaya algebra with involution \((A,\sigma )\) over a commutative ring R and some auxiliary data, we construct an 8-periodic chain complex involving the Witt groups of \((A,\sigma )\) and other algebras with involution, and prove it is exact when R is semilocal. When R is a field, this recovers an 8-periodic exact sequence of Witt groups of Grenier-Boley and Mahmoudi, which in turn generalizes exact sequences of Parimala–Sridharan–Suresh and Lewis. We apply this result in several ways: We establish the Grothendieck–Serre conjecture on principal homogeneous bundles and the local purity conjecture for certain outer forms of \({\mathbf {GL}}_n\) and \({\mathbf {Sp}}_{2n}\), provided some assumptions on R. We show that a 1-hermitian form over a quadratic étale or quaternion Azumaya algebra over a semilocal ring R is isotropic if and only if its trace (a quadratic form over R) is isotropic, generalizing a result of Jacobson. We also apply it to characterize the kernel of the restriction map \(W(R)\rightarrow W(S)\) when R is a (non-semilocal) 2-dimensional regular domain and S is a quadratic étale R-algebra, generalizing a theorem of Pfister. In the process, we establish many fundamental results concerning Azumaya algebras with involution and hermitian forms over them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The term \(W_{-\varepsilon }(B,\tau _1)\) on the bottom row of (0.1) and the maps adjacent to it differ from their counterparts in [30, p. 980]. However, the octagons become the same once identifying the term \(W_{-\varepsilon }(B,\tau _1)\) on the bottom row of (0.1) with the corresponding term \(W_{\varepsilon }(B,\tau _1)\) in op. cit. via \(\lambda \)-conjugation (“scaling by \(\lambda \)”) in the sense of 2.7 below.

  2. If A is a finite projective R-algebra of rank \(n\in \mathbb {N}\), then the trace and norm maps \({{\,\mathrm{Tr}\,}}_{A/R},{{\,\mathrm{Nr}\,}}_{A/R}:A\rightarrow R\) take \(a\in A\) to \(-c_1(a)\) and \((-1)^n c_n(a)\), respectively, where \(X^n+c_1(a)X^{n-1}+\dots +c_n(a)X^0\) is the characteristic polynomial of \([x\mapsto ax]\in {{\,\mathrm{End}\,}}_R(A)\) in the sense of [27, Example 5.3.3].

  3. This should be understood as “Azumaya algebra-with-involution” rather than “Azumaya-algebra with involution”.

  4. Some texts use “regular” or “nondegenerate”.

  5. We do not write \(\rho (Q,g)\) as \((P_A,f_A)\) because we reserve the subscript notation for base change relative to the base ring R.

  6. One can show that \({{\,\mathrm{Nrd}\,}}_{E/R}\) maps \(U(E,\theta )\) to \(\mu _2(R)\), and similarly after base-changing to S, as follows: By [39, III.§8.5] or [26, Theorems 5.17 & 5.37, Examples 7.3 & 7.4], there exists a faithfully flat R-ring \(R'\) such that \((E_{R'},\theta _{R'})\cong (\mathrm {M}_{n}(R'),\mathrm {t})\), where \(\mathrm {t}\) is the transpose involution. Now, for all \(x\in U(\mathrm {M}_{n}(R'),\mathrm {t})\), we have \({{\,\mathrm{Nrd}\,}}(x)^2=\det (x)^2=\det (x^{\mathrm {t}}x)=1\), so \({{\,\mathrm{Nrd}\,}}(x)\in \mu _2(R')\). As a result, \({{\,\mathrm{Nrd}\,}}_{E/R}\) maps \(U(E,\theta )\) to \(R\cap \mu _2(R')=\mu _2(R)\).

  7. With the appropriate definitions, this functor also extends to a sheaf on the site of all R-schemes with the fpqc topology.

  8. When R is a field, our definition of D(f) does not agree with the definition given in [40, §10]. However, both definitions give the same Brauer class by [40, Corollary 10.35].

  9. Note that in contrast with Sect. 3.1, we do no require \(\lambda ^\sigma =-\lambda \) and \(\mu ^\sigma =-\mu \). Indeed, this cannot be guaranteed in general. The situations considered in cases (i) and (ii) of Lemma 4.3 below are such examples, the reason being that \(\sigma |_B={{\,\mathrm{id}\,}}_B\) or \(\sigma |_E={{\,\mathrm{id}\,}}_E\).

References

  1. Antieau, B., Williams, B.: The topological period-index problem over 6-complexes. J. Topol. 7(3), 617–640 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antieau, B., Williams, B.: Unramified division algebras do not always contain Azumaya maximal orders. Invent. Math. 197(1), 47–56 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auslander, M., Goldman, O.: The Brauer group of a commutative ring. Trans. Am. Math. Soc. 97, 367–409 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azumaya, G.: On maximally central algebras. Nagoya Math. J. 2, 119–150 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baeza, R.: Über die Torsion der Witt-Gruppe \(W_{q}(A)\) eines semi-lokalen Ringes. Math. Ann. 207, 121–131 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baeza, R.: Quadratic Forms Over Semilocal Rings. Lecture Notes in Mathematics, vol. 655. Springer, Berlin (1978)

    MATH  Google Scholar 

  7. Balmer, P.: Witt groups. In: Handbook of \(K\)-Theory, Vol. 1, 2, pp. 539–576. Springer, Berlin (2005)

  8. Balmer, P., Preeti, R.: Shifted Witt groups of semi-local rings. Manuscr. Math. 117(1), 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balmer, P., Walter, C.: A Gersten–Witt spectral sequence for regular schemes. Ann. Sci. École Norm. Sup. (4) 35(1), 127–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bayer-Fluckiger, E., Parimala, R.: Galois cohomology of the classical groups over fields of cohomological dimension \(\le 2\). Invent. Math. 122(2), 195–229 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bayer-Fluckiger, E., First, U.A.: Patching and weak approximation in isometry groups. Trans. Am. Math. Soc. 369(11), 7999–8035 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bayer-Fluckiger, E., First, U.A.: Rationally isomorphic hermitian forms and torsors of some non-reductive groups. Adv. Math. 312, 150–184 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bayer-Fluckiger, E., First, U.A., Parimala, R.: On the Grothendieck–Serre conjecture for classical groups (2020) (Preprint). (Currently vailable at arXiv:1911.07666)

  14. Bosch, S., Lütkebohmert, W., Raynaud, M.: Néron models, volume 21 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1990)

  15. Chernousov, V., Panin, I.: Purity of \(G_2\)-torsors. C. R. Math. Acad. Sci. Paris 345(6), 307–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Colliot-Thélène, J.-L., Sansuc, J.-J.: Fibrés quadratiques et composantes connexes réelles. Math. Ann. 244(2), 105–134 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Colliot-Thélène, J.-L.: Formes quadratiques sur les anneaux semi-locaux réguliers. Bull. Soc. Math. France Mém. (59), 13–31 (1979). Colloque sur les Formes Quadratiques, 2 (Montpellier, 1977)

  18. Colliot-Thélène, J.-L., Sansuc, J.-J.: Cohomologie des groupes de type multiplicatif sur les schémas réguliers. C. R. Acad. Sci. Paris Sér. A-B 287(6), A449–A452 (1978)

  19. Conrad, B., Gabber, O., Prasad, G.: Pseudo-reductive groups, volume 26 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2nd edn (2015)

  20. DeMeyer, F., Ingraham, E.: Separable Algebras Over Commutative Rings. Lecture Notes in Mathematics, vol. 181. Springer, Berlin (1971)

    MATH  Google Scholar 

  21. Fedorov, R., Panin, I.: A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields. Publ. Math. Inst. Hautes Études Sci. 122, 169–193 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. First, U.A.: General bilinear forms. Israel J. Math. 205(1), 145–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. First, U.A.: Rings that are Morita equivalent to their opposites. J. Algebra 430, 26–61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. First, U.A.: Witt’s extension theorem for quadratic spaces over semiperfect rings. J. Pure Appl. Algebra 219(12), 5673–5696 (2015)

  25. First, U.A.: On the non-neutral component of outer forms of the orthogonal group. J. Pure Appl. Algebra 225(1), 106477 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. First, U.A., Williams, B.: Involutions of Azumaya algebras. Doc. Math. 25, 527–633 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ford, T.J.: Separable algebras, volume 183 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2017)

  28. Gille, S.: A Gersten-Witt complex for Hermitian Witt groups of coherent algebras over schemes. II. Involution of the second kind. J. K-Theory 4(2), 347–377 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gille, S.: On coherent Hermitian Witt groups. Manuscr. Math. 141(3–4), 423–446 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Grenier-Boley, N., Mahmoudi, M.G.: Exact sequences of Witt groups. Commun. Algebra 33(4), 965–986 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Grothendieck, A.: Séminaire C. Chevalley; 2e année: 1958. Anneaux de Chow et applications, Exposé 5: La torsion homologique et les sections rationnelles. Secrétariat mathématique, 11 rue Pierre Curie, Paris (1958)

  32. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes études Sci. Publ. Math. (32), 361 (1967)

  33. Grothendieck, A.: Le groupe de Brauer. II. Théorie cohomologique. In: Dix exposés sur la cohomologie des schémas, volume 3 of Adv. Stud. Pure Math., pp. 67–87. North-Holland, Amsterdam (1968)

  34. Guo, N.: The Grothendieck–Serre conjecture over semilocal Dedekind rings. Transform. Groups (2019). To appear (currently available at arXiv:1902.02315)

  35. Jacobson, J.A.: Cohomological invariants for quadratic forms over local rings. Math. Ann. 370(1–2), 309–329 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jacobson, N.: A note on hermitian forms. Bull. Am. Math. Soc. 46, 264–268 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  37. Keller, B.: A remark on quadratic spaces over noncommutative semilocal rings. Math. Z. 198(1), 63–71 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Knus, M.-A.: Pfaffians and quadratic forms. Adv. Math. 71(1), 1–20 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  39. Knus, M.-A.: Quadratic and Hermitian forms over rings, volume 294 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1991). With a foreword by I. Bertuccioni

  40. Knus, M.-A., Merkurjev, A., Rost, M., Tignol, J.-P.: The book of involutions, volume 44 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1998). With a preface in French by J. Tits

  41. Lam, T.Y.: A First Course in Noncommutative Rings, volume 131 of Graduate Texts in Mathematics. Springer, New York (1991)

  42. Lam, T.Y.: Lectures on Modules and Rings, volume 189 of Graduate Texts in Mathematics. Springer, New York (1999)

  43. Lewis, D.W.: New improved exact sequences of Witt groups. J. Algebra 74(1), 206–210 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lewis, D.W.: Exact sequences of Witt groups of equivariant forms. Enseign. Math. (2) 29(1–2), 45–51 (1983)

    MathSciNet  MATH  Google Scholar 

  45. Lewis, D.W.: Periodicity of Clifford algebras and exact octagons of Witt groups. Math. Proc. Camb. Philos. Soc. 98(2), 263–269 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  46. Mandelberg, K.I.: On the classification of quadratic forms over semilocal rings. J. Algebra 33, 463–471 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  47. Milne, J.S.: Étale Cohomology, volume 33 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ (1980)

  48. Nisnevich, Y.A.: Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind. C. R. Acad. Sci. Paris Sér. I Math. 299(1), 5–8 (1984)

  49. Ojanguren, M., Panin, I.: A purity theorem for the Witt group. Ann. Sci. École Norm. Sup. (4) 32(1), 71–86 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Orlov, D., Vishik, A., Voevodsky, V.: An exact sequence for \(K^M_\ast /2\) with applications to quadratic forms. Ann. Math. (2) 165(1), 1–13 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Panin, I.: On Grothendieck-Serre conjecture concerning principal bundles. In: Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, pp. 201–221. World Sci. Publ., Hackensack, NJ (2018)

  52. Panin, I.A.: Purity conjecture for reductive groups. Vestnik St. Petersburg Univ. Math. 43(1), 44–48 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Panin, I.A.: Proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing a field. Izv. Ross. Akad. Nauk Ser. Mat. 84(4), 169–186 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Panin, I., Pimenov, K.: Rationally isotropic quadratic spaces are locally isotropic: II. Doc. Math. (Extra vol.: Andrei A. Suslin sixtieth birthday), pp. 515–523 (2010)

  55. Pardon, W.: A “Gersten conjecture” for Witt groups. In: Algebraic \(K\)-theory, Part II (Oberwolfach, 1980), volume 967 of Lecture Notes in Math., pp. 300–315. Springer, Berlin (1982)

  56. Quebbemann, H.-G., Scharlau, W., Schulte, M.: Quadratic and Hermitian forms in additive and abelian categories. J. Algebra 59(2), 264–289 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ranicki, A.A.: Algebraic \(L\)-Theory and Topological Manifolds, volume 102 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1992)

  58. Reiner, I.: Maximal orders, volume 28 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, Oxford: Corrected reprint of the 1975 original. With a foreword by M. J. Taylor (2003)

  59. Reiter, H.J.: Witt’s theorem for noncommutative semilocal rings. J. Algebra 35, 483–499 (1975)

  60. Rowen, L.H.: Ring Theory. Vol. II, volume 128 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA (1988)

  61. Roy, A., Sridharan, R.: Derivations in Azumaya algebras. J. Math. Kyoto Univ. 7, 161–167 (1967)

    MathSciNet  MATH  Google Scholar 

  62. Saltman, D.J.: Azumaya algebras with involution. J. Algebra 52(2), 526–539 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  63. Saltman, D.J.: The Brauer group is torsion. Proc. Am. Math. Soc. 81(3), 385–387 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  64. Saltman, D.J.: Lectures on Division Algebras, volume 94 of CBMS Regional Conference Series in Mathematics. Published by American Mathematical Society, Providence, RI (1999)

  65. Scharlau, W.: Quadratic and Hermitian Forms, volume 270 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1985)

  66. Scully, S.: The Artin-Springer theorem for quadratic forms over semi-local rings with finite residue fields. Proc. Am. Math. Soc. 146(1), 1–13 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  67. Serre, J.-P.: Séminaire C. Chevalley; 2e année: 1958. Anneaux de Chow et applications, Exposé 1: Les espaces fibrés algébriques. Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1958. Reprinted in Jean-Pierre Serre, Exposés de Séminaires 1950–1999, Deuxième édition, augmentée, Documents mathématiques 1, Société mathématique de France, pp. 107–140 (2008)

  68. The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu (2018)

Download references

Acknowledgements

We are grateful to Eva Bayer-Fluckiger for suggesting us the project at hand. We further thank Eva Bayer-Fluckiger and Raman Parimala for many useful conversations and suggestions. The research was partially conducted at the department of mathematics at University of British Columbia, where the author was supported by a post-doctoral fellowship. We thank Ori Parzanchevski for encouragement and motivation.

We are also grateful to the anonymous referees for many useful suggestions which have improved the exposition.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

First, U.A. An 8-periodic exact sequence of Witt groups of Azumaya algebras with involution. manuscripta math. 170, 313–407 (2023). https://doi.org/10.1007/s00229-021-01352-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01352-0

Mathematics Subject Classification

Navigation